

Cieria Terris Gias Coi

ثبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار في درجة حرارة من 15 - 20 منوية ورطوبة نسبية من 20- 40+ 40.

To be kept away from dust in dry cool place of 15-25c and relative humidity 20-40 %

تبكة المعلومات الجامعية

شبكة المعلومات الجامعية

بعض الوثائق الأصلية تالفة

HAEMATOLOGICAL ASPET OF OCCUPATIONAL ELECTROMAGNETIC FIELD EXPOSURE

THESIS

Submitted in Partial Fulfilment for Master Degree in Emvironmental Medical Science

By Amr Saad Mohamed Gawish M.B.; Ch., DTM, and DEM.

Supervesors

Prof. Dr. Aly A. E.Massoud Dr. Moustafa H.S. Ragab Professor of Community, Environmental, and Occupational Medicine Department. Faculty of Medicine Ain - Shams University

Lecturer of Medical Department of **Institute of Environmental** Studies & Research Ain - Shams University

Institute of Environmental Studies & Research Ain - Shams University

1995

To my Parents, Wife and Sister, and my Children

ACKNOELEDGMENT

I would like to express my profound and sincere gratitude and cordial appreciation to my professor Dr. Aly Massoud. Professor of Community, Environmental, and Occupational Medicine Department, Faculty of Medicine, Ain Shams University, father of this programme for his continuous encouragement and kind help.

My deep thanks to Dr. Moustafa Hassan Ragab. Lecturer of Medical Department of Institute of Environmental Studies and Research, Ain Shams University, for his generous assistance and intelligent suggestions, and for his valuable guidance and unfailing efforts during the whole period of this study.

I thank Dr. Mahamoud Sobeh El-Hawari , Head of Medical Sector Department, Cairo Electricity Distribution Company. for his Assistance during the prepartion of this study.

I thank Dr. Engineer Fatama Moustafa the head department of international cooperation in Ministry of Electricity and Energy and Engineer Nahla Ibrahim, Research Department in Egyption Electricity Authority for great assistance during the preparation of this study.

I thank professor Dr. Nazek Ibrahim Abdoul Fattah , Head of Hebrew Department , Faculty of Art , Ain Shams University, for a great help me in this study.

I would like to a great thank every worker from different department of Cairo North Power Station and in Cairo Electricity Distribution Company who was agreed to share and help me in this study.

Lastly , I would like to thank every one who has agreed to share and help me in preparation and production of this thesis.

	•	
Alternating Current	A C	
Centimeter- gram-second (absolute system)	CGSm	
Direct Current	D C	
Electromagnetic Field	E M F	
Electromagnetic radiation	EM radiation	
Electron Volt	ev	
Environmental Impact Assessment	E I A	
Example	ex.	
Extremely Low Frequency	E L F	
Gauss	G	
Giga Hertz	9 G.HZ = 10 HZ	
Gram	gm	
Haematocrite	нст	
Haemoglobin	НЬ	
Hertz	НZ	
Infra Radiation	IR	
Kilo Hertz	$K.HZ = \begin{array}{c} 3 \\ 10 \\ HZ \end{array}$	
Kilo Volt	K V	
Kilo Watt	K W	
Last Menstrual Period	LMP	
Mean Corpuscular Haemoglobin	мсн	
Mean Corpuscular Haemoglobin Concentration	мснс	

Mean Corpuscular volume	mev 6
Mega Hertz	M.HZ = 10 HZ
Microwave	M W -9
Nano Meter	n m = 10 m
Proportional Mortality Rate	PMR
Radiofrequency	RF
Red Blood Cells	RBS
Relative Risk	RR
Standerd Deviation	SD
Tessela	T
Ultraviolet	עט
Watt	W
White Blood Cell	WBC

TABLE OF CONTENTS

	*****	Page
1 -	Introduction	7
2 -	Aim of the study	8
3 -	Review of Literature	
	* Definition and classification	9
	* Exposure to EMF	13
	* Exposure to Natural Sources	13
	* History of production of electricity in Egypt.	14
	* Classification of Power Stations	17
	* Exposure to man made sources	21
	* Health hazard due to exposure of EMF	24
	* Health Effect Assessment	26
	* Animal studies on effect EMF	29
	* Epidemiological Aspects of EMF	35
	* Human Volunteers studies	47
4 -	Subjects and Methods	5 <i>2</i>
5 ~	Results	59
6 -	Discussion	73
7 -	Summary and Conclusion	81
8 -	References	85
9 -	Appendix	99
10-	Arabic Summary	100

Introduction

Introduction

Numerous sources of electromagnetic fields (EMF) exist in nature; in occupational moreover in residential environments. The demand of electricity and subsequently to exposure increasing and creating the new environments and health problems.

Epidemiological evidence suggested possible haematological disorders from exposure to EMF in extremly low frequency (ELF). ELF ranges from 0 - 300 HZ which includes the usual public electricity power supply frequencies ranging from 50 - 60 HZ. Several investigation have studied the effect of EMF on man.

Moreover nervous, cardiac and blood disorders were also affected, (Stern et al, 1986). Contraversally, some studies failed to detect an excess of leukaemia cases among exposed to ELF, (Vagero et al, 1985 & Tornqvist et al, 1986).

The result showed a raised risk of leukaemia especially acute

myeloid leukaemia, (Coleman et al, 1989).

Interpretation of the evidence is made difficult by the complexity and upiquity of human exposure to man made ELF fields in modern society and by the difficulty of obtaining satisfactory retrospective measures of this exposure, (Coleman et al, 1989).

AIM OF THE STUDY