

Ain Shams university
Faculty of Medicine
Diagnostic Radiology department

COMPUTED TOMOGRAPHY AND MAGNETIC RESONANCE IMAGING OF PEDIATRIC ORBITAL LESIONS

An Essay
Submitted for Fulfillment of the Master Degree in Diagnostic Radiology

Presented by

Ahmed Mohammed Salah El Din Mohammed
M.B.B.Ch.

Under Supervision

of

Prof. Dr. Mohammed Zaky El Hedik

Prof. of Diagnostic Radiology Faculty of Medicine Ain Shams University

Dr. Sherine Ebrahim Sharara

Lecturer of Diagnostic Radiology Faculty of Medicine Ain Shams University

> Faculty of Medicine Ain Shams University 2015

سورة البقرة الآية: ٣٢

Acknowledgement

First of all, all gratitude is due to **God** almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

Really I can hardly find the words to express my gratitude to **Prof. Dr. Mohammed Zaky El Hedik** Professor of Diagnostic Radiology, faculty of medicine, Ain Shams University, for his supervision, continuous help, encouragement throughout this work and tremendous effort he has done in the meticulous revision of the whole work. It is a great honor to work under his guidance and supervision.

I would like also to express my sincere appreciation and gratitude to **Dr. Sherine Ebrahim Sharara** Lecturer of Diagnostic Radiology, faculty of medicine, Ain Shams University, for his continuous directions and support throughout the whole work.

Last but not least, I dedicate this work to my family & my friends whom without their sincere support, pushing me forward this work would not have ever been completed.

Ahmed Mohammed Salah El Din Cairo 2015

Contents

List of Abbreviations	I
List of Tables	III
List of Figures	IV
Introduction and aim of work	1
Chapter 1: Anatomy of the orbit and its contents	5
Chapter 2: Pathology of the pediatric orbital lesions	31
Chapter 3: Technical consideration	73
Chapter 4: CT and MRI findings	.89
Summary & Conclusion.	161
References	165
Arabic Summary	179

Tableof Abbreviations

	Abbreviations
ADC	Apparent diffusion coefficient AML= Acute
	myelogenous
CT	Computed tomography
FLAIR	Fluid-attenuated inversion recovery
FS	Fat suppression
FSE	Fast spin echo
Gd –	Gadolinium diethylenetriamine penta-acetic
DTPA	acid
IR	Inversion recovery
MRA	Magnetic resonance arteriography
MRI	Magnetic resonance imaging

PD	Proton density
PNETs	Primitive neuroectodermal tumors
RB	Retinoblastoma
SE	Spin echo
STIR	Short-time inversion-recovery
TE	Echo time
TR	Time repetition
2D	Two dimensional
3D	Three dimensional

List of tables

No.	Tables	page
Tab.1	Abnormalities arising from the extraconal, conal and intraconal spaces	32
Tab.2	CT Technique for Orbital/Globe Imaging	80
Tab.3	Scout for coronal, axial and sagittal cuts	86
Tab.4	Overview of signal intensities of specific orbital tissue and brain parenchyma	86

Table of Figures

No.	Fig.	Page
Fig. 1	3D surface shaded CT and Schematic representation of orbital bones	6
Fig. 2	Image at the level of the mid-orbit	8
Fig. 3	Axial CT of skull base	9
Fig. 4	CT of the orbit in bone window	9
Fig. 5	Zygomatico- facial canal	9
Fig. 6	Diagrams of the four compartments of the orbital space	15
Fig. 7	Diagram of extraocular muscles	17
Fig. 8	Coronal image in the mid-orbit	17
Fig. 9	Optic chiasm and tracts	19
Fig. 10	Optic chiasm and tracts	20
Fig. 11	Diagram of the visual pathway	20
Fig 12	Optic chiasm and tracts	21

Fig. 13	Axial T1-WI of the optic nerve	21
Fig. 14	Lacrimal gland	22
Fig. 15	Diagram of lacrimal apparatus	23
Fig. 16	Axial MR of the orbit	24
Fig. 17	Eye lid in horizontal sections	27
Fig. 18	The arterial supply and venouos drainage of the orbit	29
Fig. 19	Macroscopic examination of coloboma	39
Fig. 20	Inferonasal chorioretinal coloboma	39
Fig. 21	Anterior PHPV	41
Fig. 22	Posterior PHPV	42
Fig. 23	Microscopic section in specimen of late coat's disease	44
Fig. 24	Large masses of cholesterol and blood beneath the retina	44
Fig. 25	Trauma caused by a wooden stick	47
Fig. 26	Retinal and optic nerve hemorrhages	49

Fig. 27	Fungal infection	50
8		30
Fig. 28	Intraorbital abscess	51
Fig. 29	lacrimal gland dacryocytitis	53
Fig. 30	Pseudotumour of the orbit	55
Fig. 31	Idiopathic orbital inflammatory	56
Fig. 32	Inflammatory disease idiopathic orbital inflammatory disease	56
Fig. 33	Epidermoid inclusion cyst	59
Fig. 34	Capillary hemangioma	60
Fig. 35	Venous malformation	61
Fig. 36	Cavernous haemangioma	61
Fig. 37	Lymphangioma	62
Fig. 38	Optic nerve glioma	64
Fig. 39	Immunohistochemistry of optic nerve glioma	64
Fig. 40- 42	Retinoblastoma	68

Fig. 43	Enucleation specimen of retinoblastoma	69
Fig. 44	Retinoblastoma	69
Fig. 45 & 46	Medulloepithelioma	71
Fig. 47-	Marked embryonic cellular pattern	72
Fig. 49	Beam hardening artifact	76
Fig. 50 & 51	Scout view of an axial imaging protocol	79
Fig. 52 & 53	Coronal and sagittal reconstructions of the orbit	79
Fig. 54	Scout for coronal, axial and sagittal cuts	83
Fig. 55	Loss of signal at the left orbit	87
Fig. 56 & 57	Axial FLAIR images with and without motion artifact	88
Fig. 58	Unilateral anophthalmia	90
Fig. 59	Left macrophthalmia	91
Fig. 60	Coloboma	93

Fig. 61-	PHPV	95-96
Fig. 64-	Coats disease	97
Fig. 67	Orbital floor fracture	100
Fig. 68	Zygomaticomaxillary complex fracture	102
Fig. 69	Orbital roof fracture	103
Fig. 70	Posterior complete subluxation of the lens	105
Fig. 71	Corneal laceration	105
Fig. 72 & 73	Ruptured globe	107
Fig. 74	Retinal hemorrhage	109
Fig. 75	Traumatic retinal detachment	110
Fig. 76	Orbital metallic foreign body	111
Fig. 77 & 78	Carotid cavernous fistula	112- 113
Fig. 79	Optic nerve injury	114

Fig. 80	Orbital and peiorbital cellulites	116
Fig. 81	Orbital cellulites and superiosteal abcess	118
Fig. 82	Dacryocystitis	119
Fig. 83 & 84	Optic neuritis	120- 121
Fig. 85 & 86	Orbital pseudotumour	123- 124
Fig. 87	Dermoid inclusion cyst	127
Fig. 88	Epidermoid cyst	128
Fig. 89	Capillary hemangioma	130
Fig. 90 & 91	Cavernous malformation	132- 133
Fig. 92 & 93	Venous lymphatic malformation	136
Fig. 94	Optic nerve glioma	140
Fig. 95	Bilateral optic nerve gliomas	140
Fig. 96	Left optic nerve glioma	140
Fig. 97	Calcification within Retinoblastoma	142

Fig. 98	Retinoblastoma with intracranial extension	143
Fig. 99	Endophytic retinoblastoma	144
Fig. 100	Macroscopic vitreous seeding	145
Fig.101	Retinal detachment and hemorrhage	146
Fig. 102	Vitreous hemorrhage	147
Fig. 103	Iris neovascularization	148
Fig. 104	Choroidal invasion	149
Fig. 105	Transscleral spread of retinoblastoma	151
Fig. 106	Optic nerve involvement of retinoblastoma	152
Fig. 107	Extraocular tumor spread	153
Fig. 108	Trilateral retinoblastoma	154
Fig. 109	Leptomeningeal enhancement of retinoblastoma	155
Fig. 110	Medulloepithelioma of the retina	157
Fig. 111	Embryonal rhabdomyosarcoma	160

INTRODUCTION AND AIM OF WORK

The evaluation of the orbital lesions in pediatric patient, especially the extremely young, can be challenging and unreliable, and therefore requires a heightened index of suspicion and a broad differential diagnosis. Management of these disease processes requires an understanding of the growing face and sensitivity to the long-term impact of intervention. Therefore, the pediatric orbit can be highly resilient, making the care of these patients especially rewarding (Gonzalez M.O & Durairaj V.D, 2012).

Orbit and ocular adnexa are important sites for primary and secondary orbital diseases. All tissue types including bone, vascular, neural, muscular, and glandular tissues may be involved with specific pathologies (**Dutton et al., 2012**).

Different kinds of tumors, vascular, traumatic and inflammatory diseases which involve the orbit continue to be a great challenge to the diagnostic radiologist. The complex anatomy of the orbit on the one hand and the multitude of