Multislice CT angiography of peripheral pulmonary embolism

Essay

Submitted for fulfillment of master degree in **Radiodiagnosis**

By
Bahaa Mohammed Elrefaey Hassan
M.B.B.CH.

Supervised by

Prof.Dr. Amany Mohammed Rashad Abd El- Aziz

Professor of Radiodiagnosis
Faculty of Medicine - Ain Shams University

Dr. Amr Mahmoud Abd El Samad

Lecturer of Radiodiagnosis
Faculty of Medicine - Ain Shams University

Radiodiagnosis Department Faculty of Medicine Ain Shams University 2015

بِنِيْ اللَّهُ الرَّحِينَ الرَّحِينَ الْمُخْذِلُ الْمُحْمِينَ فِي اللَّهُ الللَّا اللَّهُ اللَّاللَّاللَّ اللّ

وقُل اعْمَلُوا فَسَيَرَى اللَّهُ عَمَلُكُمْ ورَسُولُهُ والْمُؤْمِنُونَ

صدق الله العظيم سورة التوبة آية (١٠٥)

First, thanks are all due to **Allah** for Blessing this work until it has reached its end, as a part of his generous help throughout our life.

My profound thanks and deep appreciation to **Prof.Dr. Amany Mohammed Rashad Abd El- Aziz**, Professor of Radiodiagnosis, Faculty of Medicine, Ain Shams University for her great support and advice, her valuable remarks that gave me the confidence and encouragement to fulfill this work.

I am deeply grateful to **Dr. Amr Mahmoud Abd El Samad,** Lecturer of Radiodiagnosis, Faculty of Medicine
Ain Shams University for adding a lot to this work by his
experience and for his keen supervision.

I am extremely sincere to my family who stood beside me throughout this work giving me their support.

Words fail to express my love, respect and appreciation to my wife for her unlimited help and support.

List of Contents

Pa	age
Acknowledgement	
List of Abbreviations	i
List of Tables	ii
List of Figures	iii
Introduction.	1
Aim of The Work	4
Anatomy	5
Pathology and Pathophysiology	22
Techniques of MSCT Pulmonary Angiography	31
Radiological Appearance of Peripheral Pulmonary embolism by MSCT Pulmonary Angiography	72
MSCT Angiography versus other Modalities in Diagnosis of Pulmonary Embolism.	94
Illustrative cases	108
Summary and Conclusion.	119
References.	122
Arabic Summary	

List of Abbreviations

3D : Three-dimensional

AFE : Amniotic fluid embolism

AP : Antero-posterior

CAD : Computer-assisted diagnosis

CT : Computed tomography

CT : Computerized tomographic

CTA : Computed tomography angiography

CTPA : CT pulmonary angiography

CTPA : Multirow CT pulmonary angiography

CTPA : Computed tomographic pulmonary

angiography

CTPA : Computed tomographic pulmonary

angiography

CTPA : CT pulmonary angiography

DVTs : Deep Venous Thrombosis

ICRP : International Commission on Radiological

Protection

MIP's : Maximum intensity projections

MPVR : Multiplanar volume reformation

MRA : Magnetic resonance angiography

MRI : Than magnetic resonance imaging

PA : Pulmonary artery

PE : Evaluation of pulmonary embolism

PE : Pulmonary embolism

List of Abbreviations

PIOPED : Prospective investigation of pulmonary

embolism diagnosis

V/Q : Ventilation-perfusion

V/Q scan : Ventilation–perfusion scintigraphy

VTE : Venous Thrombo-Embolism

List of tables

Table	Title	Page
1	Computed Tomography Pulmonary	32
	Embolism Protocols	
2	Injection protocols for the different types	37
	of scanners	
3	Pitfalls in the interpretation of CT of the	52
	pulmonary arteries	
4	Diagram illustrating scheme for	107
	pulmonary embolism diagnosis	

List of Figures

Fig.	Title	Page
1	Lung Anatomy	5
2	Pulmonary arteries and veins	6
3	The relations of the pulmonary arteries and	7
	primary bronchi seen from the front	
4	A, Anterior view of main pulmonary trunk	10
	passing posteriorly.	
	B, Posterior view with aorta and spine	
	removed	
5	Distribution of the P.A in both lungs	15
6	Drawing of pulmonary veins and left atrium	17
7	Chest CT Showing Pulmonary Artery	18
	Bifurcation	
8	Chest CT Showing segmental Pulmonary	19
	artery branches	
9	Chest CT Showing segmental Pulmonary	19
	artery branches.	
10	MHCT pulmonary angiography. Rotational	20
	("paddlewheel") 2D reconstruction image	
	shows ability of MHCT to image sub	
1.1	segmental pulmonary arteries	0.1
11	MDCT shows reconstructed coronal	21
	orientation of peripheral pulmonary	
12	vasculature	20
12	Lung infarction secondary to pulmonary	29
13	embolism occurs rarely	40
13	Bolus tracking	40
	Slice reconstruction	44
15	Effects of image windowing	
16	Multiplanar and curved reformats	46
17	Multiplanar reconstructions (MPRs)	47
18	Use of maximum intensity projections	48
	(MIPs)	

Fig.	Title	Page
19	Automatic detection of pulmonary emboli	50
	using a CAD prototype (Philips Healthcare,	
	the Netherlands)	
20	Computer-assisted diagnosis (CAD)	51
21	Breathing artifact	53
22	Pulsation artifact	54
23	CTPA of a 42-year-old male patient with	56
	acute chest pain 2 weeks after surgery	
	revealing streak artifacts at the level of the	
	right PA due to dense contrast in the SVC.	
	No PE was found	
24	Mucous plug	61
25	Transverse gadolinium-enhanced multi-	65
	detector row CT angiogram	
26	Transverse gadolinium-enhanced multi-	66
	detector row CT angiogram	
27	Transverse gadolinium-enhanced multi-	67
	detector row CT angiogram	
28	Acute pulmonary embolus (PE) A partial-	74
	filling defect	
29	Acute pulmonary embolus (PE). "Railway	74
	track sign"	
30	Acute pulmonary embolus "Hampton's	76
	hump"	
31	Post-processing techniques	77
32	Chronic PE in a patient with idiopathic	78
	pulmonary fibrosis	
33	Paddlewheel reformation method	80
34	Paddlewheel versus coronal and axial	82
	images	
35	Coronal reformatted image of a 62-year-old	84
	male with chronic pulmonary thrombo-	
	embolism showing pouch defect (arrow)	

Fig.	Title	Page
36	CT angiography of a 75-year-old male with	85
	chronic pulmonary thrombo-embolism	
	showing partial obstruction in the right	
	lower lobe pulmonary artery with intimal	
	irregularity	
37	CT pulmonary angiography in a patient of	85
	chronic pulmonary embolism showing a	
	linear filling defect attached to the walls of	
	a segmental artery of lower lobe of right	
	lung (arrow) and (b) a web in the right	
	lower lobar pulmonary artery (arrow)	
38	CT pulmonary angiography image in a 45-	86
	year-old male patient of chronic pulmonary	
	embolism showing tortuous arteries	
	(arrowheads) and post stenotic aneurysmal	
	dilatation in the segmental artery of right	
20	lung (arrow)	
39	60-year-old female patient of chronic	88
	pulmonary embolism. a CT image	
40	demonstrates mosaic perfusion pattern	0.0
40	Contrast-enhanced 16-detector row CT	90
	study obtained with 0.75-mm collimation.	
	Consecutive transverse sections show	
	isolated peripheral pulmonary embolus	
	(arrows) in a subsegmental pulmonary	
41	artery in segment 9 of the left lung Oblique sagittal multiplanar reformation	90
41	shows an embolus (arrow)	7 U
42	. Isolated peripheral pulmonary embolus	91
43	isolated pulmonary emboli (arrows) in	91
43	segmental and subsegmental arteries	71
44	Pulmonary infarct. Frontal chest radiograph	96
'+'+	reveals wedge-shaped area of air-space	<i>5</i> 0
	disease in left costophrenic sulcus (arrow)	
	also known as Hampton's Hump	
	also known as Hampton 8 Hump	

Fig.	Title	Page
45	Frontal chest radiograph in a patient with documented acute PE demonstrating enlargement of the right inter lobar	96
	pulmonary artery-the "sausage" appearance	
46	Frontal (A) and lateral (B) chest radiographs in a patient with documented acute FE and infarction demonstrating lower lobe consolidation and moderate bilateral pleural effusions	97
47	Acute pulmonary embolism. Perfusion scan reveals multiple wedge shaped perfusion defects (arrows)	98
48	Acute pulmonary embolism. Selective digital subtraction angiography in left pulmonary artery reveals segmental branch filling defect (arrow)	100
49	Pulmonary angiogram demonstrating an abrupt vascular cutoff representing acute pulmonary embolism (arrow)	100
50	63-year-old woman with elevated D-dimer values who had mild dyspnea 3 days previously. A, Oblique multi planar reformatted MR angiogram. Although sub segmental arteries of right upper lobe are depicted, image quality suffers from motion artifacts and allows segmental analysis at best. B, Double oblique maximum intensity projection (20-mm thickness) of CT angiogram shows peripheral saddle embolus (arrowhead) in segment 9 of right lower lobe	103
51	Acute pulmonary embolism: magnetic resonance angiography	104
52	Case 1	111
53	Case 2	112
54	Case 3	114

Fig.	Title	Page
55	Case 4	115
56	Case 5	116
57	Case 6	117
58	Case 7	118
59	Case 8	119

Introduction

Pulmonary embolism (PE) is a blockage of the main artery of the lung or one of its branches by a substance that has travelled from elsewhere in the body through the bloodstream (embolism). PE most commonly results from deep vein thrombosis that breaks off and migrates to the lung. A small proportion of cases are caused by the embolization of air, fat, or talc in drugs of intravenous drug abusers or amniotic fluid. The obstruction of the blood flow through the lungs and the resultant pressure on the right ventricle of the heart lead to the symptoms and signs of PE (**Braunwald et al., 2005**).

Multirow CT pulmonary angiography (CTPA) is the first-line imaging test in patients suspected for acute PE. After applying intravenous contrast material, CTPA can be performed within 4 to 6 seconds, and PE can be diagnosed in the case of interruptions of the contrast material in the pulmonary veins. With the first single-slice computed tomographic CT scanners, sensitivity was not optimal, especially in patients with a high pretest probability. A significant increase in sensitivity was seen with the introduction of multi-detector row CT scanners (Huisman and Klok, 2009).

Computed tomography angiography (CTA) of the pulmonary arteries has become the main diagnostic test for the evaluation of pulmonary embolism (PE). Not only due to the good availability, low cost and minimal invasiveness of this technique, but mainly because of the introduction of multi-detector CT techniques resulting in significant improvement in resolution, speed and image quality (Hartmann et al., 2010).

CT pulmonary angiography (CTPA) has become the de facto clinical" gold standard" for the diagnosis of acute pulmonary embolism (PE) and has replaced catheter ventilation-perfusion pulmonary angiography and scintigraphy as the first-line imaging method. The factors underlying this algorithmic change are rooted in the highsensitivity and specificity, cost-effectiveness, and 24-hour availability of CTPA. In addition, CTPA is superior to other imaging methods in its ability to diagnose and exclude, in a single examination, a variety of diseases that mimic the symptoms of PE (Henzler et al., 2011).

Computed tomography (CT) is a useful alternative to conventional angiography not only for diagnosing chronic pulmonary thrombo-embolism but also for determining which cases are treatable with surgery and confirming technical success postoperatively. The presence of one or more of the radiologic signs (direct pulmonary artery signs, signs related to pulmonary hypertension, signs of systemic collateral supply and the parenchymal signs) arouses suspicion and allows diagnosis of this entity (Castañer et al., 2009).

CTPA is the investigation of choice in patients with a high clinical suspicion of pulmonary embolus and in those with pre-existing pulmonary disease. Chest CTPA, especially multidetector CT, has proven to be superior or equal to conventional angiography, and can detect smaller filling defects. A normal CTPA result alone has been shown to safely exclude PE in all patients in whom CTPA was requested to rule out this disease.

Patients with a good quality negative CTPA (multislice) do not require further investigation or treatment for PE. Compared with isotope scanning, CTPA is quicker to perform, rarely needs to be followed by other imaging, may provide the correct diagnosis when PE has been excluded and is now available in most hospitals (**Huisman et al., 2009**).

Although nonthrombotic pulmonary embolism (Tumor, hydatid, septic, fat, amniotic fluid, cement and foreign body pulmonary embolism) is a relatively uncommon condition, it often manifests with specific imaging features that lead to a correct diagnosis. Knowledge of appropriate imaging methods and familiarity with the specific imaging features of different types of pulmonary embolism should facilitate prompt, effective diagnosis (**Han et al., 2003**).

The chest radiograph is rarely, if ever, diagnostic of PE, and thus the main role of chest radiography is to identify important alternative diagnosis such as congestive heart failure and pneumonia. In the latter case, the diagnosis of PE can be dismissed early and the need for further, advanced imaging studies may be obviated (Konstatntinides, 2007).