

OPTIMIZATION OF WATER DESALINATION BRINE DISPOSAL

A Thesis

Submitted to the Faculty of Engineering Ain Shams University for the Fulfillment of the Requirement of PHD Degree in Civil Engineering

Prepared by

Eng. MOHAMED TAREK ABDELMONIEM ISMAIL

M.Sc. in Civil Engineering 2009, Faculty of Engineering, Ain Shams University

Supervisors Prof. Dr. MOHAMED EL HOSSIENY EL NADI,

Professor of Sanitary & Environmental Engineering Faculty of Engineering, Ain Shams University, Cairo, EGYPT

Dr. ENAS SAYED AHMED WAHB,

Associate professor of Sanitary & Environmental Engineering Faculty of Engineering, Ain Shams University, Cairo, EGYPT

Dr. NANY ALI HASSAN NASR,

Associate professor of Sanitary & Environmental Engineering Faculty of Engineering, Ain Shams University, Cairo, EGYPT

2015

OPTIMIZATION OF WATER DESALINATION BRINE DISPOSAL

A Thesis For The PHD Degree In Civil Engineering (SANITARY ENGINEERING)

Eng. MOHAMED TAREK ABDELMONIEM **ISMAIL**

M.Sc. in Civil Engineering 2009, Faculty of Engineering, Ain Shams University

THESIS APPROVAL

E

EXAMINERAS COMMITTEE	SIGNATURE
Prof. Dr. MAHMOUD MOHAMED ABDEL AZEEM.	
Professor of Sanitary & Environmental Engineering Faculty of Engineering, Ain Shams University ,Cairo, Egypt	
Prof. Dr. Ir. SAMEH KHALIL SAYED Professor emiriet in Water Pollution Control Department Van Hall Institute, Wageningen University, Leeuwarden, Netherlands	
Prof. Dr. MOHAMED EL HOSSEINY EL NADI. Professor of Sanitary & Environmental Engineering Faculty of Engineering, Ain Shams University, Cairo, Egypt	

Date: - ---/2015

DEDICATION

This work takes a period from my life. I wish to dedicate it to whom suffered to educate, prepare, build capacity and help my self to be as I am;

TO MY FATHER & MY MOTHER

I wish to dedicate it also to whom ease my life and share in carrying the responsibility to help me

TO MY WIFE

AND

MY LOVELY CHILDREN

STATEMENT

This dissertation is submitted to Ain Shams University, Faculty of Engineering for the degree of PhD. in Civil Engineering.

The work included in this thesis was carried out by the author in the department of Public Works, Faculty of Engineering, Ain Shams University, from December 2011 to June 2015.

No part of the thesis has been submitted for a degree or a qualification at any other University or Institution.

Date: - ---/0-/2015 Signature:-----

Name:- MOHAMED TAREK ISMAIL

ACKNOWLEDGMENT

The candidate is deeply grateful to **Prof. Dr. Mohamed El Hosseiny El Nadi,** Professor of Sanitary & environmental Engineering & Head of Public Works Department, Faculty of Engineering, Ain Shams University, for his patient guidance, helpful suggestions, great supporting, reviewing, cooperation and help in both the thesis and laboratory work.

Great thanks to **Dr. Enas Sayed Ahmed Wahb**, Associate Professor of Sanitary Engineering, Faculty of Engineering, Ain Shams University, for her encourage and cooperation during the preparation of this study

Also, great thanks to **Dr. Nany Ali Hassan Nasr**, Associate Professor of Sanitary Engineering, Faculty of Engineering, Ain Shams University, for her help, encourage and cooperation during the preparation of this study

ABSTRACT

Name: MOHAMED TAREK ABDEL MONIEM ISMAIL

Title: OPTIMIZATION OF WATER DESALINATION BRINE DISPOSAL

Faculty: Faculty of Engineering, Ain Shams University.

Speciality: Public Works, Sanitary Engineering.

Summary:

Water desalination processes have contributed to a better standard of living in a number of countries during the second half of the 20th century, following an increase in water demand for drinking purposes as well as industrial and agricultural uses. Desalination process produces two streams of water, one is the product fresh water, and the other is concentrate water containing salts and any un-reacted pre-treatment chemicals (Brine). Brine is considered to be one of the main environmental aspects that affects the surrounding environment during disposal. There are a variety of methods that are used for brine disposal / management. The most common methods include (i) Surface water Discharge, (ii) Ground water Discharge, (iii) Evaporation ponds.

The availability of the disposal alternative is mostly site-specific. Therefore, the most suitable disposal methods from an environmental and economic perspective have to be evaluated on a site-specific basis.

The aim of this study is to develop a mathematical model, named "Brine disposal decision support system" (BDDSS). The model's main objective is to assist decision makers (Consultant's or Government authorities) in the selection of an optimum brine disposal solution applying applicable, environmentally friendly and cost effective methods, through a user friendly interface that reaches results in a short time.

The BDDSS model can be applied to any desalination plant to obtain the optimum brine disposal solution, by providing three scenarios for brine disposal, after performing a compilation of all inputs provided by the user, then start comparison among the three alternatives and select the optimum solution / alternative through an evaluation matrix based on the cost / environmental of each disposal alternative. The optimum solution provided is the one achieving lowest cost and lowest negative environmental impact

Supervisors:

Prof. Dr. MOHAMED EL HOSSIENY EL NADI, Dr. ENAS SAYED AHMED WAHB, Dr. NANY ALI HASSAN NASR,

TABLE OF CONTENTS

TITL	E	Page
COVE	ER	i
THES	IS APPROVAL	ii
DEDI	CATION	iii
STAT	EMENT	iv
ACKI	NOWLEDGEMENT	v
ABST	RACT	vi
ABBF	REVIATIONS	vii
TABL	E OF CONTENTS	viii
LIST	OF TABLES	xiii
LIST	OF FIGURES	xvii
CHA	PTER I: INTRODUCTION	1-5
1.1	BACKGROUND	1
1.2		1
1.3	TARGET OF STUDY	1
1.4	SCOPE OF WORK	2
1.5	THESIS ORGANIZATION	4
1.5.1	CHAPTER I – INTRODUCTION	4
1.5.2	CHAPTER II – LITERATURE REVIEW	4
1.5.3	CHAPTER III – MODEL DEVELOPMENT	4
1.5.4	CHAPTER IV – FIELD ANALYSIS RESULTS	4
1.5.5	CHAPTER V – DETAILED MODEL DESCRIPTION	4
1.5.6		_
	APPLICATIONS	5
1.5.7	CHAPTER VII – CONCLUSIONS	5
CHA	PTER II: LITERATURE REVIEW	6-50
2.1	BACKGROUND	7
2.2	DESALINATION TECHNOLOGIES	8
2.3	DESALINATION TECHNOLOGY APPLICATIONS	9
2.3.1	REVERSE OSMOSIS DESALINATION	10
2.3.2	THERMAL DISTILLATION	14
233	OTHER PROCESSES	16

2.4	DESALINATION BRINE DISPOSAL	18
2.4.1	INTRODUCTION	19
2.4.2	BRINE DISPOSAL METHODS	21
2.5	ADVANTAGES & DISADVANTAGES OF MAIN	29
	BRINE DISPOSAL METHODS	29
2.5.1	DEEP WELL INJECTION	30
2.5.2	EVAPORATION POND DISPOSAL	32
2.5.3	DIPOSAL INTO SEA WATER	35
2.6	INTERNATIONAL APPLICATION OF BRINE	40
	DISPOSAL	40
2.7	APPLICATION OF BRIEN DISPOSAL IN EGYPT	44
2.8	BRINE CHARACHTARISTICS	50
СНА	PTER III: MODEL DEVELOPMENT	51- 70
3.1	MODEL IMPLEMENTATION	52
3.1.1		52
3.1.2		53
3.1.3		54
3.1.4		54
3.2		_
	ALTERNATIVES	58
3.3	ENVIRONMENTAL REGULATIONS FOR BRINE	7 0
	DISPOSAL	58
3.3.1	EGYPTIAN REGULATIONS	58
3.3.2	INTERNATIONAL REGULATIONS	61
3.4	MODEL EVALUATION & ASSESSMENT	66
3.4.1	COST ESTIMATION FOR EACH DISPOSAL	
	METHOD	66
3.4.2	HIGHLIGHTING THE OPTIMUM SOLUTION	
	FROM BOTH THE ECONOMICAL AND	66
	ENVIRONMENTAL PERSPECTIVES	
3.5	WORK PLAN	67
CHA	PTER IV: FIELD ANALYSIS RESULTS	71-105
4.1	FIELD MEASUREMENTS	72
4.1.1	MEASUREMENTS RELATED TO EFFLUENT	73
4.1.2	MEASUREMENTS RELATED TO DISPOSAL SITE	74
4.2	FILED ANALYSIS RESULTS	77
4.3	SUMMARY OF ANALYSIS	105
CHA	PTER V: DETAILED MODEL DESCRIPTION	106-189
5.1	LITERATURE REVIEW ON THE MAJOR BRINE	107
	DISPOSAL ALTERNATIVES	107
5.2	PREVIOUS MODELS FOR BRINE DISPOSAL	117

		4.0
5.3	INTRODUCTION TO THE MODEL	120
5.4	STRUCTURE OF THE MODEL	126
CHAP	TER VI: DISCUSSION FOR MODEL APPLICATIONS	190-216
6.1	DISCUSSION FOR MODEL APPLICATIONS	192
6.1.1	MODEL OBJECTIVE AND TARGET	192
6.1.2	MODEL APPLICATION	192
6. 2	CASE STUDY	194
6.2.1	INTRODIUCTION	194
6.2.2	STUDY AREA	195
6.2.3	CURRENT STATE OF THE EXISTING	196
	DESALINATION PLANT	190
6.2.4	APPLYING THE BDDSS MODEL ON THE	197
	EXISTING DESALINATION PLANT	177
6.3	DISCUSSION FOR RESULTS OBTAINED FROM	204
	THE MODEL	204
6.3.1	MODEL SCENARIOS EVALUATION	204
6.3.2	REACHING THE OPTIMUM SOLUTION FOR	208
	BRINE DISPOSAL	200
CHAI	PTER VII: CONCULSION	217-219
7.1	INTRODUCTION	217
7.2	CONCLUSION	218
7.3	RECOMMENDATIONS	219

LIST OF TABLES

Table	Page
CHAPTER II: LITERATURE REVIEW	
TABLE (2/1) PERCENTAGE OF SALT IN VARIOUS	6
TYPES OF WATER)	U
TABLE (2/2) ADVANTAGES AND DISADVANTAGES	24
OF INJECTION WELL	24
TABLE (2/3) ADVANTAGES AND DISADVANTAGES	27
OF EVAPORATING PONDS	
TABLE (2/4) ADVANTAGES AND DISADVANTAGES	34
OF BRINE DISCHARGE INTO THE SEA	
TABLE (2/5) PERCENT DISTRIBUTION OF CURRENT	35
CONCENTRATE DISPOSAL TECHNIQUES	
COMMON IN THE U.S.	4.4
TABLE (2/6) WATER SALINITY VARIATIONS.	44
CHAPTER III: MATERIAL AND METHODS	
TABLE(3/1) MAXIMUM LIMITS OF CRITERIA AND	
SPECIFICATIONS	55
TABLE(3/2) MAXIMAL STANDARDS OF PROCESSED	
LIQUID INDUSTRIAL WASTES THAT ARE	56
DRAINED	
CHAPTER IV: FIELD ANALYSIS RESULTS	
TABLE (4/1) SALINE WATER CHARACTERISTICS -	68
HURGHADA	08
TABLE (4/2) BRINE CHARACTERISTICS - HURGHADA	70
TABLE (4/3) SALINE WATER CHARACTERISTICS –	
SHARM EL SHEIKH	71
TABLE (4/4) BRINE CHARACTERISTICS - SHARM EL	
	73
SHEIKH	
TABLE (4/5) SALINE WATER CHARACTERISTICS – EL	74
SALOUM	
TABLE (4/6) Brine Characteristics – El Saloum	76
TABLE (4/7) SALINE WATER CHARACTERISTICS –	78
MATROUH	10
TABLE (4/8) BRINE CHARACTERISTICS – MATROUH	79
TABLE (4/9) SALINE WATER CHARACTERISTICS – AL	
OUSEIR	80

TABLE (4/10) BRINE CHARACTERISTICS – AL QUSEIR	82
TABLE (4/11) SALINE WATER CHARACTERISTICS –RAS	83
GHAREB	03
TABLE (4/12) BRINE CHARACTERISTICS – RAS GHAREB	85
TABLE (4/13) SALINE WATER CHARACTERISTICS –	86
HURGHADA	00
TABLE (4/14) BRINE CHARACTERISTICS – HURGHADA	88

LIST OF FIGURES

Figure	Page
CHAPTER II: LITERATURE REVIEW	_
FIGURE (2/1) A FLOW CHART OF R.O PLANTS	7
FIGURE (2/2) TYPICAL R.O PLANT INSTALLATION	8
FIGURE (2/3) MULTI-STAGE FLASH DISTILLATION	11
FIGURE (2/4) MULTISTAGE EFFECT DISTILLATION	11
FIGURE (2/5) SOLAR HUMIDIFICATION PROCESS, UNITS IN MEXICO	13
FIGURE (2/6) DEEP-WELL DISPOSAL UNIT.	19
FIGURE (2/7) DEEP-WELL DISPOSAL UNIT.	25
FIGURE (2/8) GENERALIZED EMBANKMENT DIMENSIONS	26
FIGURE (2/9) CROSS- SECTION OF EMBANKMENT	26
FIGURE (2/10) GENERAL LAYOUT OF A BRINE	22
DISPOSAL PIPELINE	32
FIGURE (2/11) TYPICAL DIFFUSERS SECTION	32
FIGURE (2/12) SUBMERGED DISCHARGE VIA	33
PIPELINE AND NOZZLE	33
FIGURE (2/13) LARGE DESALINATION PLANTS IN	38
EGYPT	
CHAPTER III: MATERIAL AND METHODS	
FIGURE (3/1) MODEL STRUCTURE	46
FIGURE (3/2) MODEL SNAPSHOT – BRINE	47
CHARACTERISTICS	
FIGURE (3/3) BRINE DISCHARGE CHARACTERISTICS	48
FIGURE (3/4) MODEL SNAPSHOT – BLENDED	48
EFFLUENT CHARACTERISTICS	
FIGURE (3/5) MODEL SNAPSHOT – AMBIENT	49
CHARACTERISTICS	
FIGURE (3/6) BRINE DISCHARGE CHARACTERISTICS OF DESALINATION PLANTS	49
FIGURE (3/7) LAYOUT OF AN OUTFALL PIPELINE	
WITH MULTIPORT DIFFUSER	50
FIGURE (3/8) EFFECT OF SALINITY FACTOR ON THE	
FOOTPRINT AREA OF A POND	53
FIGURE (3/9) FLOW DIAGRAM OF BRINE DISPOSAL	_
METHODS	62
CHAPTER IV: FIELD ANALYSIS RESULTS	

FIGURE (4/1) AVERAGE SEAWATER TEMPERATURE IN	89
HURGHADA	09
FIGURE (4/2) AVERAGE SEAWATER TEMPERATURE IN SHARM	90
EL SHEIKH	90
FIGURE (4/3) AVERAGE SEAWATER TEMPERATURE IN AL	91
QUSEIR	71
FIGURE (4/4) AVERAGE SEAWATER TEMPERATURE IN NORTH	92
COST)
FIGURE (4/5) AVERAGE SEAWATER TEMPERATURE	93
IN MARSA ALAM	75
FIGURE (4/6) SOIL ANALYSIS, INJECTION WELL,	94
HURGHADA 1	74
FIGURE (4/7) SOIL ANALYSIS, INJECTION WELL,	95
HURGHADA 2	75
FIGURE (4/8) SOIL ANALYSIS, INJECTION WELL,	96
HURGHADA 3	70
FIGURE (4/9) RESULTS SUMMARY FOR SALINE	97
WATER ANALYSIS (TDS))
FIGURE (4/10) RESULTS SUMMARY FOR SALINE	98
WATER ANALYSIS (PH)	70
FIGURE (4/11) RESULTS SUMMARY FOR AVERAGE	99
WIND SPEED	"
CHAPTER V: DETAILED MODEL DESCRIPTION	
FIGURE (5/1) POND DIFFUSER SECTION ASSEMBLING	100
ON SHORE	100
FIGURE (5/2) LAYOUT OF AN OUTFALL PIPELINE	103
WITH MULTIPORT DIFFUSER	
FIGURE (5/3) BRINE EVAPORATION POND	105
7FIGURE (5/4) CAUSES OF PONDS LEAKING	106
FIGURE (5/5) A TYPICAL INJECTION WELL	110
FIGURE (5/6) CORMIX SOFTWARE.	111
FIGURE (5/7) BUNDLES OF SERVICES OF THE MODEL	116
FIGURE (5/8) SNAPSHOT AUTO AIDING TOOLS AND	117
DATA ILLUSTRATIONS	
FIGURE (5/9) BUNDLES OF SERVICES OF THE MODEL	119
FIGURE (5/10) MODEL STRUCTURE	120
FIGURE (5/11) SNAPSHOT OF THE MODEL	121
ILLUSTRATING "SHOW ON MAP OPTION"	121
FIGURE (5/12) MODEL SNAPSHOT – INPUTS RELATED	123
TO DESALINATION PLANT	123
FIGURE (5/13) MODEL SNAPSHOT – INPUTS RELATED	124
TO SEAWATER DISPOSAL	. ∠-T

FIGURE (5/14) MODEL SNAPSHOT – INPUTS RELATED	124
TO WELL INJECTION FIGURE (5/15) MODEL CHARGIOT INDUTE BELATED	
FIGURE (5/15) MODEL SNAPSHOT – INPUTS RELATED TO EVAPORATION POND	125
FIGURE (5/16) SEAWATER DENSITY & VISCOSITY	4.00
CALCULATOR	130
FIGURE (5/17) VARIATION IN DENSITY OF	
SEAWATER AS A FUNCTION OF TEMPERATURE AND	130
SALINITY	
FIGURE (5/18) VARIATION IN VISCOSITY OF	
SEAWATER AS A FUNCTION OF TEMPERATURE AND	131
SALINITY	
FIGURE (5/19) GEOMETRIC JET PROPERTIES AT	122
MAXIMUM LEVEL OF RISE	133
FIGURE (5/20) JET TRAJECTORIES FOR VARIABLE	122
OFFSHORE SLOPE	133
FIGURE (5/21) CHART USED FOR DETERMINING	137
WELL DIAMETER	137
FIGURE (5/22) ILLUSTRATION FOR GETTING WELL	
DIAMETER USING MAX TUBING VELOCITY AND	137
INJECTION DISCHARGE	
FIGURE (5/23) ILLUSTRATION FOR DIFFERENT TYPES	139
OF WELL CASING	139
FIGURE (5/24) COST OF WELL CALCULATION	141
CHARTS	171
FIGURE (5/25) MODEL SNAPSHOT – POND	145
DIMENSIONS INPUT	
FIGURE (5/26) POND LINERS	146
FIGURE (5/27) CLAY POND LINER	148
FIGURE (5/28) CONFIGURATIONS OF GCLS	149
FIGURE (5/29) CONFIGURATIONS OF GCLS	150
FIGURE (5/30) PVC ROLLS POND LINERS	151
FIGURE (5/31) EPDM RUBBER LINERS	152
FIGURE (5/32) HDPE LINERS	153
FIGURE (5/33) LINER SYSTEM DETAILS	155
FIGURE (5/34) A SNAPSHOT OF THE MODEL	158
ILLUSTRATING AMBIENT OUTCOMES	150
FIGURE (5/35) A SNAPSHOT OF THE MODEL	
ILLUSTRATING AMBIENT OUTCOMES (EFFLUENT	158
FLOW RATE / SALINITY / DENSITY / VISCOSITY /	100
BOYANT ACCELERATION)	
FIGURE (5/36) ILLUSTRATION FOR SEA WATER	159

DISPOSAL SUMMARY OUTCOMES	
FIGURE (5/37) ILLUSTRATION FOR SEA WATER	1.00
DISPOSAL CHARACTERISTICS	160
FIGURE (5/38) SEA WATER DISPOSAL	1.61
ENVIRONMENTAL EVALUATION	161
FIGURE (5/39) MODEL SNAPSHOT ILLUSTRATION	160
FOR SOIL LAYERS	162
FIGURE (5/40) MODEL SNAPSHOT ILLUSTRATION OF	F 162
WELL DESIGN PARAMETERS	163
FIGURE (5/41) MODEL SNAPSHOT ILLUSTRATION OF	1.02
WELL CASING DIAMETERS AND ARRANGEMENTS	163
FIGURE (5/42) SOIL STRATA ANALYSIS	164
FIGURE (5/43) CHART ILLUSTRATING COSTS OF	1.65
WELLS CONSTRUCTION AGAINST WELLS CASING	165
FIGURE (5/44) WELL INJECTION ENVIRONMENTAL	1.00
EVALUATION	166
FIGURE (5/45) MODEL SNAPSHOTS – POND	1.67
DIMENSIONS OUTPUT	167
FIGURE (5/45) MODEL SNAPSHOTS – POND	1.67
DIMENSIONS SKETCH	167
FIGURE (5/46) MODEL SNAPSHOT – POND LINER	1.60
OUTPUTS	168
FIGURE (5/47) POND LINER CROSS SECTION FOR	1.00
EACH LINER	169
FIGURE (5/48) POND LINER CROSS SECTION FOR	170
EACH LINER	170
FIGURE (5/49) EVAPORATION POND	170
ENVIRONMENTAL EVALUATION	173
CHAPTER VI: DISCUSSION	
FIGURE (6/1) METHODOLOGY FOR APPLYING THE	177
BDDSS MODEL	176
FIGURE (6/2) LOCATION OF THE CASE STUDY /	1.77
KUWAIT BAY	177
FIGURE (6/3) LAND USE FOR THE AREA TO BE	170
STUDIES / KUWAIT BAY	178
FIGURE (6/4) DISTRIBUTION OF SURFACE SALINITY ((
PPT) IN KUWAIT BAY	` 179
,	
FIGURE (6/5) EXISTING BRINE DISPOSAL METHOD	100
FOR KUWAIT BAY	180
FIGURE (6/6) SUGGESTED SOLUTION FOR BRINE	101
DISPOSAL METHOD FOR KUWAIT BAY	181