

AIN SHAMS UNIVERSITY

Faculty of Engineering

Mechatronics Engineering Department

Development of Wind Turbine Pitch Angle Controller

A thesis submitted in partial fulfillment of the requirements for the degree of

Master Of Science In Mechanical Engineering
(Mechatronics Engineering)

By

AbdelRahman Marzouk Ahmed Elkattan

Bachelor of Science in Mechatronics Engineering

High Institute of Engineering – 6th October City, 2008

Supervisors:

Prof. Dr. Farid A. Tolba

Prof. Dr. Zakaria Ghoneim

Prof. Dr. Magdy M. Abdel Hameed

Dr. Aya Diab

Cairo, Egypt - 2015

AIN SHAMS UNIVERSITY

Faculty of Engineering

Mechatronics Engineering Department

Development of Wind Turbine Pitch Angle Controller

By

AbdelRahman Marzouk Ahmed Elkattan

Bachelor of Science in Mechatronics Engineering

High Institute of Engineering – 6th October City, 2008

Examination Committee

Name and Affiliation

Signature

Prof. Dr. Farid A. Tolba

Design and Production Engineering Dept. Faculty of Engineering – Ain Shams University

Prof. Dr. Taher Abou-Elyazied

Design and Production Engineering Dept. Faculty of Engineering – Ain Shams University

Prof. Dr. Osama Ezzat Abellatif

Mechanical Power Engineering Dept. Faculty of Engineering – Shoubra, Benha University

Date: 26 December 2015

STATEMENT

This thesis is submitted in partial fulfilment of Master of Science degree in Mechanical Engineering, Faculty of Engineering, Ain Shams University.

The author carried out the work included in this thesis, and no part of this thesis has been submitted for a degree or qualification at any other university.

Signature

AbdelRahman M. Elkattan

Date: 26 December 2015

RESEARCHER PROFILE

Name: AbdelRahman Marzouk Ahmed Elkattan

Date of birth 9 January 1987

Place of birth Saudi Arabia

Last academic degree: BS.c. in Mechatronics Engineering

Field of specialization Mechatronics Engineering

University issued the degree: High Institute of Engineering -6^{th} October City

Date of issued the degree: 30 July 2008

Current job: Teaching Assistant – High Institute of Engineering

Name: AbdelRahman M. Elkattan

Signature:

THESIS SUMMARY

The world's need for energy that does not end, but is growing day after day. The renewable sources of energy come in the first priority of the world. Especially, wind energy is the best developing energy technology between the other renewable energies. Additionally, it has more benefits such as pollution free and clean. These factors made the wind energy production in continuously increasing.

So it became very important to generate more power from wind turbines while significantly reduce more loads. Thus, the control strategies are playing an important role to deal with the challenging characteristics of the wind turbines, these control models must be designed as robust as possible to do its role in different operating conditions and over a long period of time.

The main aim of our thesis is to design and simulate a pitch controller for reducing loads and maximizing the output power using FAST code developed by NREL, and Matlab/Simulink. But naturally, we should initially introduce aerodynamics and loads calculations of the horizontal axis wind turbine (HAWT).

Thesis presents two WT control models for two different machines (NREL 5 MW HAWT and NREL 1.5 MW HAWT). The control model of NREL 5 MW HAWT uses FAST to control and simulate the results of the two wind turbines operation regions (Region 2 for wind velocities below rated velocity and Region 3 for wind speeds above rated velocity). On the other side, the interfacing between FAST and MATLAB/Simulink is used to control of NREL 1.5 MW HAWT to control and simulate the results of the two wind turbine operation regions.

However, we can deduce from the simulation results of the two control models that in Region 2, which wind velocities are less than the rated value, blade pitch is kept at a certain value and generator torque control is applied to change the velocity of the turbine to sustain tip speed ratio (TSR) at certain value consistent to best power coefficient (C_p) , therefore maximizing energy extracted. In Region 3 which wind velocities are greater than the rated value, generator torque is kept at rated torque, and blade pitch control is applied to control aerodynamic power to keep constant turbine velocity, in addition to decrease the moments on the wind turbine blades.

Keywords: Wind turbine, Control, Aerodynamics, Loads, Simulation, Power, Moments, Wind speed.

ACKNOWLEDGEMENT

I am very grateful to **ALLAH** Subhanahu Wa Ta'ala who gave me an excellent family to live with and provided me the environment where I could finish my M.Sc., without whose will it would have been impossible to complete my degree.

I would like to express my deepest thanks to **Prof. Farid A. Tolba** for his supervision and providing me with the resources I needed for work.

I would like to express my warmest gratitude to **Prof. Magdy Abdelhameed** for his continuous encouragement.

I would also like to thank **Prof. Zakaria Ghoneim** for his valuable help.

Similarly, I thank **Dr. Aya Diab** for her active contribution to refining my research work and in filling the gaps. At times, when things looked difficult, she was the one who gave me hope. She was there to listen to my concerns, review the material, provide feedback and show direction.

Thanks to my **great parents** for what they have contributed towards my different levels of education. Great advice with enthusiastic soul always make me supported. Their prayers over the years are something that I cannot thank them enough.

I am deeply indebted to great people. My wife **Nehal** for her care and daily support. My brothers **Ahmed**, **Amr**, **Mohamed**, and **Mostafa** for their encouragements. And I dedicate this thesis to my dear daughter **Pissan**.

Finally, I owe special thanks to all my colleagues **Eng. Abdelhaleim Elkhawas** and **Eng. Abeer Sabry,** and my teacher and my big brother **Dr. Sameh Farid** for many helps and encouragements.

TABLE OF CONTENTS

ACKNOWLEDGEMENT	VII
LIST OF FIGURES	X
LIST OF ABBREVIATIONS	XII
LIST OF GREEK SYMBOLS	XIV
LIST OF ALPHABETIC SYMBOLS	XV
CHAPTER 1 INTRODUCTION	1
1.1 Background	1
1.2 Wind Energy in Egypt	4
1.3 Wind Turbine Control	6
1.3.1 Fixed Speed, Pitch-Controlled WT	6
1.3.2 Variable-Speed Pitch-Controlled Wind Turbine	7
1.3.3 Standard Control Models versus Multi-Variable Control Strategies	10
1.4 Overview of Simulation Tools (FAST and Matlab/Simulink)	11
1.5 Thesis Overview	12
CHAPTER 2 LITERATURE SURVEY	13
2.1 Background	13
2.2 FAST	22
CHAPTER 3 MATHEMATICAL MODELING	24
3.1 Rotor Aerodynamics	24
3.1.1 The Actuator Disc Concept	24
3.1.2 Blade Element Momentum (BEM) theory	28
3.2 Wind Turbine Loads	34
3.3 Mathematical Model Results	41
3.4 Wind Turbine Modeling	44
CHAPTER 4 CONTROLLER	47
4.1 Control Model of a 5 MW HAWT (Using FAST)	47
4.1.1 Baseline Generator-Torque Controller	47
4.1.2 Baseline Blade-Pitch Controller	48
4.2 Control Model of a 1.5-MW HAWT	50
4,2.1 Generator Torque Control (Region 2)	50

4.2.2 Blade Pitch Angle Control (Region 3)	. 54
CHAPTER 5 SIMULATION AND RESULTS	. 58
5.1 Control Model of a 5 MW HAWT (Using FAST)	. 58
5.2 Control Model of a 1.5MW HAWT	. 61
5.2.1 Baseline Generator Torque Control Design (Region 2)	. 61
5.2.2 Baseline Pitch Angle Control Model (Region 3)	. 62
5.2.3 Overall Control of a 1.5 MW HAWT	. 64
CHAPTER 6 CONCLUSIONS and FUTURE WORK	. 68
6.1 Suggested Future work	. 69
CHAPTER 7 REFERENCES	. 70
APPENDIX A: Input FAST Files for Simulation and Linearization (Section 5.1.)	. 74
A.1. FAST Simulation Files for the NREL 5.0 MW Baseline Wind Turbine (Onshore)	. 74
A.2. FAST file containing Aerodynamic input parameters for the NREL 5.0 MW Baseline Wind Turbine (Onshore)	77
A.3. FAST file containing ElastoDyn input parameters for the NREL 5.0 MW Baseline Win Turbine (Onshore)	
A.4. FAST file containing control and electrical-drive input parameters for the NREL 5.0 M Baseline Wind Turbine (Onshore)	
APPENDIX B: FAST Simulation Files for the 1.5-MW HAWT (Section 5.2.)	. 94
B.1. FAST Input File Example	. 94
B.2. Aerodyn Input File Example	105
B.3. Wind Input File Example at 18 [m/s]	107
ARARIC SUMMARY	112

LIST OF FIGURES

Figure 1-1 Evolution of Utility-Scale Wind Turbines (www.cleantechreporter.com)	. 1
Figure 1-2 Global Annual Installed Wind Capacity 1997-2014 [1]	. 2
Figure 1-3 Cumulative Wind Power Capacity Dec 2014 (Mw) - Top 10 and Rest of the World	
Source: GWEC [1]	
Figure 1-4 Cumulative Wind Power Capacity Dec 2014 (Mw) – Africa and Middle East Sourc	e:
GWEC [1]	
Figure 1-5 Zafarana Wind Farm (Source: NREA)	
Figure 1-6 Main Control Loop for a Fixed-Speed Pitch-Regulated Turbine	. 7
Figure 1-7 Wind Turbine Operation Regions	. 7
Figure 1-8 Power Coefficient versus Tip-Speed Ratio at Different Pitch Angles [3]	. 8
Figure 1-9 Simulation Results [4]	10
Figure 1-10 Validation Results using the FAST Simulator [4]	11
Figure 1-11 FAST/Simulink Open-Loop Model	12
Figure 2-1 Two Types of PC Actuators: Hydraulic and Electric	
Figure 2-2 Loads Alleviation using IPC (Bending Moment about the Hub) [16]	14
Figure 2-3 Load spectra [16]	
Figure 2-4 Comparison of Collective and Individual Pitch Control [18]	15
Figure 2-5 Blade Root Bending Moment Spectrum During Turbulent Winds with Different	
Turbulence Intensities [19]	
Figure 2-6 Flapwise Moment for State 1 (Dotted), State 2 (Dashed), State 3 (Solid) [20]	
Figure 2-7 Pitch Position, Speed and Acceleration Reference Anti-Windup IPC for Blade Loa	
Alleviation [20]	
Figure 2-8 Rotor Shaft Moment for State 4 (Solid) and State 5 (Dashed) [20]	17
Figure 2-9 Blade Root Fapwise Moment (Top) and Shaft Moment (Bottom) Under State 4	
(Solid) and State 6 (Dashed) [20]	
Figure 2-10 The Reduction in Root Flap Bending Moment at: 16 m/s (Right) and 20 m/s (Left)	
Wind Conditions [23]	18
Figure 2-11 Rotor Speed for Various Controllers: a) Standard Wind Turbine Control; b)	
Reduction of Fluctuations by CPC Only; c) Reduction of Fluctuations by IPC Only; d) Reducti	
of Fluctuations by CPC and IPC. [24]	
Figure 2-12 Aerodynamic Loads for Various Controllers: a) Standard Wind Turbine Control;	
b) Reduction of Fluctuations By CPC Only; c) Reduction of Fluctuations By IPC Only; d)	10
Reduction of Fluctuations by CPC and IPC. [24]	
Figure 2-13 Tower Top Velocity for Various Controllers: a) Standard Wind Turbine Control;	
Reduction of Fluctuations by CPC Only; c) Reduction of Fluctuations by IPC Only; d) Reducti	
of Fluctuations by CPC and IPC. [24]	19
Figure 2-14 Interfacing Modules to Achieve Fully Coupled Aero-Hydro-Servo-Elastic	22
Simulation.	
Figure 3-1 The Energy Extraction Stream Tube of a Wind Turbine [41]	
Figure 3-2 Energy Extraction based on Actuator Disc Theory [41]	23

Figure 3-3 Alteration of C_p and C_T versus a [41]	27
Figure 3-4 A Discretization using Blade Element Theory [41]	28
Figure 3-5 Element Velocities and Forces [41]	
Figure 3-6 Calculation Flow Chart for Induction Factors	32
Figure 3-7 Power Coefficient – Tip Speed Ratio [41]	
Figure 3-8 Characterization of Wind Turbine Loads as External and Internal Loads	34
Figure 3-9 Characterization of Wind Turbine Loads as Steady and Non-Steady Loads	35
Figure 3-10 A Blade Cross Section with Definition of Blade Bending Moments	36
Figure 3-11 Air Speeds and Forces on the Aerofoil [44]	38
Figure 3-12 Effects of Wind Shear and Tower Shadow on Wind Speed over One Complete	•
Revolution	42
Figure 3-13 Effects of Wind Shear and Tower Shadow on the Power over One Complete	
Revolution	42
Figure 3-14 Edgewise and Flapwise Moments over One Complete Revolution	42
Figure 3-15 Power Curve of a 600 kW Wind Turbine at Different Wind Speeds	43
Figure 3-16 Edgewise and Flapwise Moments at Different Wind Speeds	43
Figure 3-17 Schematic of Wind Turbine	44
Figure 3-18 Two-Mass Model of a Wind Turbine [4]	
Figure 3-19 Single-Mass Model of a Wind Turbine [4]	46
Figure 4-1 Response of Generator Torque with Generator Speed of the Variable-Speed	
Controller	48
Figure 4-2 Wind Turbine Operating Regions	
Figure 4-3 Simulink Model of the Overall Wind Turbine Control Showing the Generator To	orque
Controller	53
Figure 4-4 Simulink Model of the Overall Wind Turbine Control Showing the Blade Pitch	
Controller	
Figure 5-1 Generator Angular Speed (HSS) as a Function of Wind Speed	
Figure 5-2 Rotor Angular Speed (LSS) as a Function of Wind Speed	
Figure 5-3 Steady-State Responses versus Wind Speed	
Figure 5-4 Electrical Torque of the Generator versus Wind Speed	
Figure 5-5 Flapewise Moments at the Blades Root versus Wind Speed	
Figure 5-6 Edgewise Moments at the Blades Root versus Wind Speed	
Figure 5-7 FAST/Simulink Simulation Results of the Generator Torque Control (Region 2)	
Figure 5-8 Power Coefficient with Wind Speed	
Figure 5-9 Response to a Step Wind Input for Different Damping Ratios (δ)	
Figure 5-10 Generator Torque Curve at Different Wind Speeds for a 1.5 MW HAWT	
Figure 5-11 Blade Pitch Angles at Different Wind Speeds	
Figure 5-12 Power Curve with Wind Speeds for 1.5 MW HAWT	
Figure 5-13 Edgewise Moment Curve with Wind Speeds for a 1.5 MW HAWT	
Figure 5-14 Flapwise Moment Curve with Wind Speeds for 1.5 MW HAWT	67

LIST OF ABBREVIATIONS

BEM Blade Element Momentum Method

BldPitch1 B	Blade-1 Pitch Angle
CART C	Controls Advanced Research Turbine
CBP SS	Collective Blade Pitch State Space
CPC C	Collective Pitch Control
DFIG D	Ooubly Fed Induction Generator
DOF D	Degree of Freedom
EMA E	Exponential Moving Average
FAST F	Satigue, Aerodynamics, Structures And Turbulence
FLC F	Suzzy Logic Control
GenSpeed G	Generator Speed
GenPwr G	Generator Power
GenTq G	Generator Torque
GH G	Garrad Hassan
GL G	Germanischer Lloyd
GSPI G	Gain Scheduled Proportional-Integral Controller
GWEC G	Global Wind Energy Council
HAWT H	Iorizontal Axis Wind Turbine
HorWindV H	Jorizontal Wind Speed
HSS H	ligh Speed Shaft
HSShftPwr H	ligh Speed Shaft Power
IBP In	ndividual Blade Pitch
IPC Ir	ndividual Pitch Control

LQG	Linear Quadratic Gaussian
LSS	Low Speed Shaft
MBC	Multi-Blade Coordinate
MIMO	Multi Input Multi Output
NREA	National Renewable Energy Authority in Egypt
NREL	National Renewable Energy Laboratory in USA
PC	Pitch Control
PI	Proportional-Integral
PID	Proportional-Integral-Derivative
PIP	Proportional-Integral-Plus
PMSG	Permanent Magnet Synchronous Generator
RootMEdg1	Blade-1 Root Edgewise Moment
RootMFlp1	Blade-1 Root Flapwise Moment
RotSpeed	Rotor Speed
RotPwr	Rotor Power
SISO	Single Input Single Output
SS	State Space
TS	Tower Shadow Effect
TSR	Tip Speed Ratio
WAMIT	Wave-Body Interaction Program
WECSs	Wind Energy Conversion Systems
WS	Wind Shear Effect
WT	Wind Turbine

LIST OF GREEK SYMBOLS

 α Angle of Attack [deg]

β	Blade Pitch Angle [deg]
$\Delta oldsymbol{eta}$	Small Perturbation of the Blade-Pitch Angles about their Operating Point [deg]
$oldsymbol{eta_{opt}}$	Optimal Pitch Angle [deg]
$\zeta_{\varphi n}$	Damping Ratio
λ	Tip Speed Ratio (TSR)
λ_{opt}	Optimal Tip Speed Ratio
μ	Non-Dimensional Radial Position, r/R
ρ	Air Density [kg/m³]
σ	Rotor Solidity
φ	Flow Angle [deg]
ψ	Azimuth Angle [rad]
ω	Angular Speed [rad/s]
$\boldsymbol{\omega_g}$	Generator Rotational Speed [rad/s]
ω_r	Rotor Rotational Speed [rad/s]
$\omega_{\varphi n}$	Natural Frequency [rad/s]
Ω	Rotor Speed [rad/s]
Ω_2	Rotor Speed at Rated Torque [rad/s]
Ω_0	Rated Low-Speed Shaft Rotational Speed [rad/s]
$\Delta oldsymbol{\Omega}$	Small Perturbation of Low-Speed Shaft Rotational Speed about the Rated Speed [rad/s]
$\Delta\dot{m{\Omega}}$	Low-Speed Shaft Rotational Acceleration [rad/s ²]
γ	Cone Angle of the Rotor [rad]
τ	Tilt Angle of the Rotor [rad]

LIST OF ALPHABETIC SYMBOLS

a Axial Flow Induction Factor

a'	Tangential Flow Induction Factor
A, A_d	Rotor Swept Area [m ²]
A_{∞} , A_{W}	Upstream and Downstream Stream-Tube Cross-Sectional Areas [m ²]
AC	The Distance from Leading Edge A to Pressure Center C [m]
b	Surface Roughness Length
$\boldsymbol{B_{ls}}$	Low Speed Shaft Stiffness [N.m/rad]
С	Blade Chord [m]
С	Decay Constant
C_d	Sectional Drag Coefficient
C_l	Sectional Lift Coefficient
C_{M}	Pitching Moment Coefficient
C_n	Normal Force Coefficient
C_p	Power Coefficient
C_q	Torque Coefficient
C_T	Thrust Coefficient
C_t	Tangential Force Coefficient
F	Prandtl Loss Factor
F	Force [N]
$\boldsymbol{F}_{\boldsymbol{\mathcal{X}}}$	Edgewise Force [N]
$\boldsymbol{F}_{\boldsymbol{y}}$	Flapwise Force [N]
$J_{Drivetrain}$	Drivetrain Inertia Cast to the Low-Speed Shaft [kg.m²]