The value of α-Fetoprotein (AFP)-L3 and Transforming Growth Factor B1 (TGFB1) as Prognostic markers of Hepatocellular Carcinoma after Radiofrequency Ablation

Thesis

Submitted in Partial Fulfillment for the MD Degree in Internal Medicine

By

Ahmed Jado Nabih

M. Sc. Medicine - Faculty of Medicine, Ain Shams University

Under the Supervision of Prof. Dr. Ahmed Shawky Elsawaby

Professor of Internal Medicine
Faculty of Medicine, Ain Shams University

Prof. Dr. Khalid Abdelwahab

Professor of Internal Medicine Faculty of Medicine, Ain Shams University

Prof. Dr. Wesam Ahmed Ibrahim

Professor of Internal Medicine
Faculty of Medicine, Ain Shams University

Dr. Shereen Abobakr Abdelrahman

Assistant Professor of Internal Medicine Faculty of Medicine, Ain Shams University

Faculty of Medicine, Ain Shams University 2017

List of Contents

	Page No.
List of Figures	I
List of Tables	IV
List of Abbreviations	VII
Introduction	1
Aim of the Work	3
Hepatocellular carcinoma (HCC)	4
Percutaneous radio frequency ablation (RFA)	34
Alpha fetoprotein L3 (AFP) L3	53
Transforming Growth Factor Beta1 (Tgfb1)	67
Subjects and Methods	80
Results	86
Discussion	124
Summary	137
Conclusion and Recommendations	143
References	145
Arabic Summary	

List of Figures

Figure	No. Title	Page No.
Fig. (1):	BCLC staging system and therapeuti according to EASL-EORTC guidelin	
Fig.(2):	Bar chart: the main complaint di among patient group	
Fig.(3):	Pie chart tumor recurrence distributi patient group	
Fig.(4):	Child-Pugh class distribution of the group	-
Fig.(5):	Bar chart between patients and contregarding TGFB1, AFP and AFP before radiofrequency ablation	L3/AFP%
Fig.(6):	Bar chart between patients and regarding e of AFL3/AFP% [<10 radiofrequency ablation)] before
Fig.(7):	Bar chart between patients and group after radiofrequency ablation	
Fig.(8):	Bar chart between patients and for AFPL3/AFP% [>10] after radio ablation	frequency

Fig. (9):	Comparison regarding TGFB1, AFP and
	AFPL3/AFP% before and after radiofrequency ablation in patient group
Fig.(10):	Bar chart between before and after radiofrequency ablation regarding to AFPL3/AFP% [>10]
Fig.(11):	Bar chart between before and after radiofrequency ablation in tumor recurrence group and no recurrence group
Fig.(12):	Bar chart between tumor recurrence and AFPL3/AFP% in patients group
Fig. (13):	Scatter plot between AFPL3/ AFP% and tumor recurrence in patients group
Fig. (14):	Scatter plot between INR with TGFB1 pre and post
Fig. (15):	Scatter plot between Total bilirubin with TGFB1 pre and post
Fig. (16):	Scatter plot between albumin with TGFB1 pre and post
Fig. (17):	Scatter plot between alkaline phosphatase with TGFB1 pre and post RFA
Fig. (18):	Scatter plot between model for end-stage liver disease with TGFB1 pre and post

Fig. (19):	Scatter plot between Child-Pugh class with
	TGFB1 pre and post116
Fig. (20):	Scatter plot between platelets count with TGFB1 pre and post
Fig. (21):	Sensitivity and specificity within ROC curve in TGFB1, AFP and AFPL3/AFP in discrimination of patients and control
Fig. (22):	Sensitivity and specificity within ROC curve in TGFB1, AFP and AFPL3/AFP in
	discrimination of tumour recurrence

List of Tables

Table No	$. \hspace{1.5cm} \textbf{\it Title}$	Page No.	•
Table (1):	Comparison between patients and according to demographic data		7
Table (2):	The percentage of main complain the patients group (Group 1)	_	3
Table (3):	INR, Total bilirubin, Albumin, Aland Tumor size descriptive of the group	patients)
Table (4):	TGFB1, AFP and AFPL/AFP% be after radiofrequency in patients ground		1
Table (5):	Rate of tumor recurrence among the group	-	2
Table (6):	Alkaline phosphatase, Renal func MESLD score, platelet count		3
Table (7):	Child-Pugh class distribution of the group	•	4
Table (8):	Comparison between patients and group regarding TGFB1, AFP and AFP% before radiofrequency ablatic	AFPL3/	5

Table (9):	Comparison between patients and control regarding TGFB1, AFP and AFPL3/AFP%
	after radiofrequency ablation
Table (10):	Comparison regarding TGFB1, AFP and AFPL3/AFP% before and after radiofrequency ablation in patient group 101
Table (11):	Difference between before and after radiofrequency ablation in tumor recurrence group and group with no tumor recurrence regarding TGFB1, AFP and AFPL3%
Table (12):	Relation between tumor recurrence and AFPL3/AFP% in patients group
Table (13):	Correlation between AFPL3/ AFP% and other parameters using Pearson Correlation Coefficient in patients group
Table (14):	Correlation between TGFB1 and other parameters using Pearson Correlation Coefficient in patients group
Table (15):	Correlation between TGFB1, AFP and AFL3/ AFP% using Pearson Correlation Coefficient in patients group
Table (16):	Diagnostic Performance of after Radiofrequency Ablation in Discrimination of patients and control regarding TGFB1, AFP and AFPL3

Table (17):	Dia	agnostic	Performa	ance	of	after	
	Ra	diofreque	ency Ablatio	n in	Discri	mination	
	of	tumour	recurrence	rega	rding	TGFB1,	
	ΑF	P and AI	FPL3/AFP%				121

List of Abbreviations

3-dimensional conformal technique		
American Association of Study of the Liver		
Disease		
Alpha fetoprotein		
Alpha fetoprotein L3		
Alkaline phosphatase		
Alanine transaminase		
Aspartate transaminase		
Barcelona Clinic Liver Cancer		
Body mass index		
Chronic liver disease		
Cancer of the Liver Italian Program		
Computed tomography		
Death associated protein kinase1		
Death associated protein 6		
Des-gamma-carboxy prothrombin		
Duchenne muscular dystrophy		
European Association of Study of Liver		

ECM	Extracellular matrix
EGFR	Epidermal growth factor receptors
GDP	Guanosine 5 – Diphosphate
GP 73	Golgi protein-73
HBV	Hepatitis B virus
нсс	Hepatocellular carcinoma
HCV	Hepatitis C virus
HIV	Human immunodefiency virus
ILK	Integrin-linked kinase
INR	International randomized ratio
ITAS	Micro total analysis system
JIS	Japan Integrate Staging
LAP	Latency associated peptide
LCA	Lens calinaris agglutinin
MELD	Model for End-Stage Liver Disease
PEI	Percutaneous ethanol injection
PMCT	Percutaneous microwave coagulation therapy
POAG	Primary open angle glaucoma
PODs	PML oncogenic domains

RUQ	Right upper quadrant		
SD	Standard deviation		
Smads	Mothers against decapentaplegic homolog		
SPSS	Statistical Program for Social Science		
SVR	Sustained virological response		
T Bilirubin	Total bilirubin		
T.AFP	Total alpha fetoprotein		
TACE	Transarterial chemoembolization		
TbR	TGFB1 receptor		
TNF-α	Tumor necrosis factor-alpha		
U/S	Ultrasound		

INTRODUCTION

Liver cancer in men is the fifth most frequently diagnosed cancer worldwide, and is the second leading cause of cancer-related death in the world. In women, it is the seventh most commonly diagnosed cancer and the sixth leading cause of cancer death (Jemal et al., 2011).

Early detection of hepatocellular carcinoma (HCC) is important as the treatment of HCC with surgical resection, liver transplantation or percutaneous ablation can be curative at early stage (Izumi, 2010).

The recommended screening strategy for hepatocellular carcinoma includes measurement of serum α -fetoprotein (AFP) levels and an abdominal ultrasound every 3-6 mo for the detection of HCC at an earlier stage (**Bruix and Sherman, 2011**). However, serum AFP level has a high false negative rate for the detection of small or early stage tumors (**Saffroy et al., 2007**) and it is often markedly elevated in patients with either cirrhosis or those with exacerbated chronic hepatitis without HCC (**Bae et al., 2005**).

AFP-L3 is an isoform of alphafetoprotein (AFP), has been reported to be highly specific for HCC (**Durazo et al.**, **2008**) and the surveillance program with this marker have

been mostly organized by Japanese study groups (**Izumi.**, **2010**).

TGF- β 1 is a family of disulfide-linked polypeptides with a molecular weight of 25kD. There are three isoforms of TGF- β expressed in mammals; TGF- β -1, TGF- β -2 and TGF- β -3. Understanding the mechanism of TGF- β has been the focus of recent studies in separating the pathogenesis of many human cancers (**Elliott and Blobe, 2005**).

TGF- β -1 is the predominant and universally expressed isoform found in human liver. It has been implicated to play a role as a potent inhibitor of both normal and neoplastic rat hepatocyte proliferation as well as in the development of liver fibrosis. TGF- β -1 has also been found to be elevated in serum, urine and tissues of patients with HCC (**Sacco et al.**, **2000**).

Radiofrequency ablation (RFA) is a localized thermal treatment technique designed to induce tumor destruction by heating the tumor tissue to temperatures that exceed 60°C (McGahan et al., 1992). Radiofrequency ablation (RFA) has been used as the most popular method for treating early stage HCC and during the past two decades, many clinical studies have confirmed the safety and therapeutic efficacy of radiofrequency (Yan et al., 2008).

AIM OF THE WORK

To asses the value of α -fetoprotein (AFP)-L3 combined with transforming growth factor B1 (TGFB1) as prognostic markers in the hepatocellular carcinoma after radiofrequency.

HEPATOCELLULAR CARCINOMA (HCC)

Introduction

Hepatocellular carcinoma (HCC) is the most common primary malignant tumor and is derived from hepatocytes. The most common causes are chronic viral infection (hepatitis B and C), aflatoxin B1 ingestion, and chronic alcoholic abuse (Ayman Abdo et al., 2011).

It is a fatal disease, with a life expectancy of about 6 months from the time of diagnosis and exhibits striking differences related to age, gender, ethnic group, and geographic region, and is rising even in countries with relatively low incidence (Olivier Seror et al., 2014).

It has poor prognosis and ranks third as the cause of cancer deaths in East Asia and sub-Saharan Africa and second as the cause of male cancer deaths in China. (YasunoriMinami and Masatoshi Kudo, 2011).

The majority of HCC patients present with an advanced stage for which chemotherapy and radiotherapy have limited efficacy (Ryota Masuzaki and Masao Omata, 2008).