BIOLOGICAL CONTROL OF ROOT -KNOT NEMATODE ON CUCUMBER PLANTS USING RHIZOBACTERIA

By

BEDOUR HOSNY AHMED ABD EL-RAHMAN

B.Sc. Agricultural Sciences (Plant Pathology), Ain Shams University, 2017

AThesis Submitted in Partial Fulfilment

Of

The Requirements for the Degree of

MASTER OF SCIENCES in

Agricultural Sciences (Sustainable crops protection)

Department of Plant Pathology Faculty of Agriculture Ain Shams University

Approval Sheet

BIOLOGICAL CONTROL OF ROOT -KNOT NEMATODE ON CUCUMBER PLANTS USING RHIZOBACTERIA

By

BEDOUR HOSNY AHMED ABD EL-RAHMAN

B.Sc. Agricultural Sciences (Plant Pathology), Ain Shams University, 2017

Thi	This thesis for M.Sc. degree has been approved by:						
Dr.		of	Plant	Amin Pathology,		Agriculture,	
Dr.		of	Plant	Mousa Pathology,		Agriculture,	
Dr.	0.	of	Plant			Agriculture,	

Date of examination: 9 / 11 / 2017

BIOLOGICAL CONTROL OF ROOT -KNOT NEMATODE ON CUCUMBER PLANTS USING RHIZOBACTERIA

By

BEDOUR HOSNY AHMED ABD EL-RAHMAN

B.Sc. Agricultural Sciences (Plant Pathology), Ain Shams University, 2017

Under the supervision of:

Dr. Nagy Abd-Elghafar Yasiin

Professor of Plant Pathology, Department of Plant Pathology, Faculty of Agriculture, Ain Shams University (Principal Supervision)

Dr. Samaa Mahmoud Shawky

Head of Reserch Nematode, Research Department of Plant Pathology, Research Institute, ARC.

Dr. Mouhamed Mouhamed Youssof

Lectural of Plant Pathology, Department of Plant Pathology, Faculty of Agriculture, Ain Shams University

ABSTRACT

Bedour Hosny Ahmed Abd El-Rahman; Biological control of root-knot nematode on cucumber plants using rhizobacteria, unpublished M.Sc. Thesis, Department of plant pathology, Faculty of Agriculture, Ain Shams University, 2017.

The root-knot nematodes described as sedentary endoparasites, and are known as the most harmful agricultural pests against a wide range of crops. This study was conducted to evaluate some rhizbacterial isolates and some soil amendments for controlling root-knot nematode under laboratory, greenhouse and field conditions. Nematode of *Meloidogyne incognita* and rhizobacterial bio-agents were isolated from infected cucumber plants which collected from Qualbia and Ismailia governorates.

Isolation and identification of rhizobacterial bio-agents were obtained three isolates which were *Bacillus amyloliquefaciens, Rhizobium rhizogenes* and *Serratia marcescens*. Which were identified according to morphological and biochemical characters and confirmed by using Biology test.

In vitro, rhizobacterial isolates showed significant on mortality and hatching of *M. incognita*, and all rhizobacterial treatments compared with the control as untreated treatments and with mocap 10%G, as nematicide. Isolates of rhizobacteria *B. amyloliquefaciens* and *R. rhizogenes* showed high efficiency on mortality and hatching of *M. incognita*. At concentration 10⁸CFU/ml of isolate *B. amyloliquefaciens* showed the highest effective on the mortality and egg hatching of *M. incognita*, while *S. marcescens* isolate had the lowest effective.

Under greenhouse conditions, isolate of *B. amyloliquefaciens* showed the highest decrease on mortality of nematode individually soil and roots (developmental stages, females, number of eggs/ egg-mass) compared to the other treatments. *R. rhizogenes* isolate reached to the second level in reducing the nematode populations, while *S. marcescens*

isolate showed the lowest effective on nematode populations in soil and roots. Also, it was obvious that *M. incognita* population in both soil and roots was significantly suppressed with the rhizobacterial isolates treatments. Also, all treatments lead to increase in fresh weight and roots of cucumber plants. The treatment with *B.amyloliquefaciens* showed the highest value of percentage in the total plant fresh weight, while the treatment with isolate of *S. marcescens* gave the lowest value of percentage increase at fresh weight.

Results of soil amendments treatment showed that garlic (*Allium sativum*) treatment gave the highest decrease on mortality of nematode in soil and roots (developmental stages, females, number of eggs/ egg-mass) comparing to other treatment of Cabbage (*Brassica oleracea*) and Eucalyptus (*Eucalyptus* spp.). As well, in all treatments whit soil amendments it was obvious that *M. incognita* population density in both soil and roots was meaningfully inhibited and increase at all plan fresh weight of cucumber plants.

Under field conditions, results in all treatment obtained reduction in the nematode population. So, the nematode population declined regularly in soil and root of the treated plants. Then, significant reduction in nematode density achieved after two months or more excepting in numbers of nematode as a totals in soil and root samples were improved. In the final of experiment all the treatments gave suitable reduction in the nematode counts. All treatments improved % over control, and fresh weight of plants were greatly developed in both treatments of nematicide Mocap10%G, isolate of *B.amyloliquefaciens* and garlic (*Allium sativum*) treatments gave the highest of reduction of nematode population, while the treatment of *S.marsescens* isolate and eucalyptus (*Eucalyptus* spp.) gave the lowest effective.

Keywords: Biological control, Root-knot nematode, Soil amendments, Rhizobacteria, *Meloidogyne incognita*.

ACKNOWLEDGEMENT

Firstly, I direct my deepest thanks to our God, by the graces of whom the present work was realized

It is my immense pleasure and duty to express my sincere gratitude to **Prof. Dr. Nagy Yassin Abd El-ghaffar,** Professor of Plant Pathology, Plant Pathology Department, Faculty of Agriculture, Ain Shams University for direct supervision, her helpful suggestions, careful guidance, valuable comments during the course of the experimental work and revision of the manuscript.

The authoress would like to thank **Prof. Dr. Samaa Mahmoud Shawky** Professor of Nematology, Head of Nematology Department,
Plant Pathology Research Institute, A.R.C., Giza, for her expert assistance, providing and supervising this work.

Thanks are giving to **Dr.Mohamed Youssof Banora**, Associate Professor of Plant Pathology, Plant Pathology Department, Faculty of Agriculture, Ain Shams University for his supervision, excellent technical assistance, stimulating discussions, dedicated effort in reviewing this work and preparation of the manuscript.

I would like to give special thanks to **Prof. Dr. Ahmed Ahmed Mousa** Professor of plant pathology and **Prof. Dr. Moustafa Helmy El- hammady** Professor of plant pathology.

ABSTRACT

Bedour Hosny Ahmed Abd El-Rahman; Biological Control of Rootknot Nematode on Cucumber Plants Using Rhizobacteria, Unpublished M.Sc. Thesis, Department of Plant Pathology, Faculty of Agriculture, Ain Shams University, 2017.

The root-knot nematodes described as sedentary endoparasites, and are known as the most harmful agricultural pests against a wide range of crops. This study was conducted to evaluate some rhizbacterial isolates and some soil amendments for controlling root-knot nematode under laboratory, greenhouse and field conditions. Nematode of *Meloidogyne incognita* and rhizobacterial bio-agents were isolated from infected cucumber plants which collected from Qualbia and Ismailia governorates.

Isolation and identification of rhizobacterial bio-agents were obtained three isolates which were *Bacillus amyloliquefaciens*, *Rhizobium rhizogenes* and *Serratia marcescens*. Which were identified according to morphological and biochemical characters and confirmed by using Biology test.

In vitro, rhizobacterial isolates showed significant on mortality and hatching of *M. incognita*, and all rhizobacterial treatments compared with the control as untreated treatments and with mocap 10%G, as nematicide. Isolates of rhizobacteria *B. amyloliquefaciens* and *R. rhizogenes* showed high efficiency on mortality and hatching of *M. incognita*. At concentration 108CFU/ml of isolate *B. amyloliquefaciens* showed the highest effective on the mortality and egg hatching of *M. incognita*, while *S. marcescens* isolate had the lowest effective.

Under greenhouse conditions, isolate of *B. amyloliquefaciens* showed the highest decrease on mortality of nematode individually soil and roots (developmental stages, females, number of eggs/ egg-mass) compared to the other treatments. *R. rhizogenes* isolate reached to the second level in reducing the nematode populations, while *S. marcescens*

isolate showed the lowest effective on nematode populations in soil and roots. Also, it was obvious that *M. incognita* population in both soil and roots was significantly suppressed with the rhizobacterial isolates treatments. Also, all treatments lead to increase in fresh weight and roots of cucumber plants. The treatment with *B.amyloliquefaciens* showed the highest value of percentage in the total plant fresh weight, while the treatment with isolate of *S. marcescens* gave the lowest value of percentage increase at fresh weight.

Results of soil amendments treatment showed that garlic (*Allium sativum*) treatment gave the highest decrease on mortality of nematode in soil and roots (developmental stages, females, number of eggs/ egg-mass) comparing to other treatment of Cabbage (*Brassica oleracea*) and Eucalyptus (*Eucalyptus* spp.). As well, in all treatments whit soil amendments it was obvious that *M. incognita* population density in both soil and roots was meaningfully inhibited and increase at all plan fresh weight of cucumber plants.

Under field conditions, results in all treatment obtained reduction in the nematode population. So, the nematode population declined regularly in soil and root of the treated plants. Then, significant reduction in nematode density achieved after two months or more excepting in numbers of nematode as a totals in soil and root samples were improved. In the final of experiment all the treatments gave suitable reduction in the nematode counts. All treatments improved % over control, and fresh weight of plants were greatly developed in both treatments of nematicide Mocap10%G, isolate of *B.amyloliquefaciens* and garlic (*Allium sativum*) treatments gave the highest of reduction of nematode population, while the treatment of *S.marsescens* isolate and eucalyptus (*Eucalyptus* spp.) gave the lowest effective.

Keywords: Biological control, Root-knot nematode, Soil amendments, Rhizobacteria, *Meloidogyne incognita*.

ACKNOWLEDGEMENT

Firstly, I direct my deepest thanks to our God, by the graces of whom the present work was realized

It is my immense pleasure and duty to express my sincere gratitude to **Prof. Dr. Nagy Yassin Abd El-ghaffar,** Professor of Plant Pathology, Plant Pathology Department, Faculty of Agriculture, Ain Shams University for direct supervision, her helpful suggestions, careful guidance, valuable comments during the course of the experimental work and revision of the manuscript.

The authoress would like to thank **Prof. Dr. Samaa Mahmoud Shawky** Professor of Nematology, Head of Nematology Department, Plant Pathology Research Institute, A.R.C., Giza, for her expert assistance, providing and supervising this work.

Thanks are giving to **Dr.Mohamed Youssof Banora**, Associate Professor of Plant Pathology, Plant Pathology Department, Faculty of Agriculture, Ain Shams University for his supervision, excellent technical assistance, stimulating discussions, dedicated effort in reviewing this work and preparation of the manuscript.

I would like to give special thanks to **Prof. Dr. Ahmed Ahmed Mousa** Professor of plant pathology and **Prof. Dr. Moustafa Helmy El- hammady** Professor of plant pathology.

CONTENTS

	Page
LIST OF TABLES	IV
LIST OF FIGURES	VI
I.INTRODUCTION	1
II.REVIEW OF LITERATURE	4
2.1. Cucumber (Cucumis sativus L.) plants.	4
2.2. Plant parasitic nematode (Root-knot)	4
2.2.1. Incidence of root-knot nematode	6
2.2.2. Life cycle	7
2.2.3. Symptoms and damage	7
2.2.4. Meloidogyne spp	8
2.3. Management strategies of root-knot nematodes	9
2.3.1. Soil amendments	9
2.3.2. Biological Control	11
2.3.3. Rhizobacteria	11
III. MATERIALS AND METHODS	16
3.1. General Preparations	16
3.1.1. Samples collection	16
3.1.2. Isolation and identification of root-knot nematode	16
3.1.3. Preparation of root-knot nematode inoculum	16
3.1.4. Isolation and identification of rhizobacterial bio-agents	16
3.1.4.1. Preparation of rhizobacterial bio-agents inoculum	16
3.2. Laboratory experiments	18
3.2.1. Testing effect of rhiobacterial isolates on M. incognita	
Juvenile (J ₂) mortalit y	18
3.2.2. Testing the effect of rhiobacterial bio-agents on the growth	
parameter of cucumber seedlings	18
3.3. Green house experiments	19
3.3.1. General preparations to achieve pot experiments	19
3.3.1.1. Soil sterilization and transplanting of cucumber seedlings	19

	Page
3.3.1.2. Preparation of rhizobacterial bio-agents culture	19
3.3.1.3. Soil treatment with rhizobacterial bio-agents	19
3.3.1.4. Soil infestation with root-knot nematode (<i>M. incognita</i>)	19
3.3.1.5. Experimental design under greenhouse conditions	19
3.3.1.6. Assessment of nematode population	20
3.3.1.6.1. Assessment of the average number of egg-masses	20
3.3.1.6.2. Assessment of the average numbers of females and	
developing stages	20
3.3.1.6.3. Assessment of final nematode population in soil	20
3.3.1.7. Evaluation of vegetative parts of plants	20
3.3.2. Evaluation of the rhizobacterial bio-agents against	
M.incognita on cucumber plants	21
3.3.4. Testing the effect of using soil amendments on infection of	
cucumber plants with root-knot nematode (M.incognita)	21
3.3.5. Efficacy of rhizobacterial bio-agents in controlling root-	
knot nematode (M.incognita)	22
3.3.6. Efficacy of soil amendments in controlling root-knot	
nematode (M.incognita)	22
3.4. Simulated field experiments	23
3.4.1. General preparations to achieve the simulated field	
experiments	23
3.4.1.1. Preparations of field soil	23
3.4.1.2. Experimental design	23
3.4.1.3. Treatments with the rhizobacterial bio-agents	23
3.4.1.4. Treatments with the soil amendments	23
3.4.1.5. Treatment with nematicides	24
3.4.2. Effect of rhizobaterial bio-agents on infection of root-knot	24
nematode (M. incognita)	24
3.5. Statistical analysis	24
IV. RESULTS	25
4.1. Isolation and identification of nematode	25

	Page
4.2. Isolation and identification of rhizobacterial bio-agents	25
4.3. Results of laboratory experiments	30
4.3.1. Effect of rhizobacterial bio-agents on <i>M. incognita</i> jueniles	
(J ₂) mortality	30
4.4. Greenhouse experiments:	35
4.4.1. Effect of rhizobacterial bio-agents on <i>M. incognita</i> population	
in roots of cucumber plants:	35
4.4.2. Effect of rhizobacterial bio-agents on root gall index,	
population and reduction% of M. incognita in rhizospher of	
cucumber plants, under greenhouse conditions experiments	37
4.4.3. Effect of rhizobacterial bio-agents on fresh weight of	
cucumber plants:	38
4.4.4. Effect of soil amendments on population of <i>M. incognita</i> on	
roots of cucumber plants:	40
4.4.5. Effect of soil amendments at different concentrations on	
nematode population in rhizosphere and root gall severity of	
cucumber plants under greenhouse conditions:	42
4.4.6. Effect of soil amendments on fresh weight of cucumber	
plants infected by <i>M. incognita</i> , under greenhouse conditions:	44
4.5. Simulated field experiments:	45
4.5.1. Effect of rhizobacerial bio-agents and soil amendments on	
controlling root-knot nematode (<i>M.incognita</i>) of cucumber plants:	45
4.5.2. Yield of cucumber plants	48
V. DISCUSSION	49
VI. SUMMARY	52
VII. REFERENCES	56
ARABIC SUMMARY	

LIST OF TABLES

Table No.		Page
1	Identification of rhizobacterial isolates according to	
	morphological and physilogical charactrects	26
2	Percentage mortality of J ₂ Meloidogyne incognita	
	affected by gradually concentrations of rhizobacterial	
	bio-agents at 25C°.	30
3	Influence of gradually concentrations of tested	
	rhizobacterial isolates on seed germination, seeding	
	growth and vigor growth index of cucumber	
	seedlings at 25C°.	33
4	Effect of rhizobacterial bio-agents with different	
	concentrations on M. incognita population in infected	
	root-tissue of cucumber plants under greenhouse	
	conditions	36
5	Effect of rhizobacterial isolates on root gall index,	
	population and reduction% of M. incognita in	
	rhizospher of cucumber plants, under green- house	
	conditions	38
6	Effect of soil amendments, at different concentration on	
	nematode population in root tissue under greenhouse	
	conditions	41
7	Effect of soil amendments at different concentrations	
	on nematode population in rhizosphere and root	
	gall severity of cucumber plants under greenhouse	
	conditions.	43
8	Effect of rhizobacterial bio-agent at concentration	
	(10 ⁸ CFU/ml), on final nematode population in both	
	rhizosphere and root tissue cucumber plants after 120	
	days from sowing, under field conditions	46

Table No.		Page
9	Effect of soil amendments (30g/plant) on nematode	
	population in rhizosphere and root tissue of	
	Cucumber plants at different period, under field	
	conditions	47

LIST OF FIGURES

Fig. No.		Page
1	Computer sheet showing species identification of	
	Bacillus amyloliquefaciens isolate, using	
	BIOLOG GN-Microplate system.	27
2	Computer sheet showing species identification of	
	Rhizobium rhizogenes isolate, using BIOLOG	
	GN-Microplate system.	28
3	Computer sheet showing species identification of	
	Serratia marcescens isolate, using BIOLOG GN-	
	Microplate system.	29
4	Influence of gradually concentrations of tested	
	rhizobacterial isolates on mortality of <i>M. incognita</i>	
	juveniles, <i>In vitro</i> at 25°C	31
	Influence of gradually concentrations of tested	
	rhizobacterial isolates on seed germination,	
	seeding growth and vigor growth index of	
	cucumber seedlings at 25°C.	34
6	Effect of rhizobacterial bio-agents on fresh weight	
	of cucumber plants	39
7	Effect of soil amendments on fresh weight of	
	cucumber plants infected by M. incognita, under	
	greenhouse conditions	44
8	Effect of rhizobacterial bio-agents and soil	
	amendments on the yield of cucumber plants	
	infected by M. incognita, under field conditions after	
	120 days	48