Monitoring of Clearance of Hepatitis C Virus-RNA In Therapeutic Treated Patients By Recent Molecular Techniques

A thesis

Submitted for Partial Fulfillment of Master Degree Of Science in Microbiology (Medical Virology and Molecular Biology)

By

Ahmed Khedr Mohamed Haredi

B.Sc. Microbiology Ain Shams University

Under Supervision of

Prof. Dr. Ahmed B. Barakat

Professor of Virology, Microbiology Department, Faculty of Science. Ain Shams University

Prof. Dr. Mohamed S. Salama

Professor of Molecular biology, Faculty of Science, Ain Shams University

Dr. Hossam El Din A. Ghanem

Lecturer of Virology, Microbiology Department, Faculty of Science, Ain Shams University

Department of Microbiology Faculty of Science Ain Shams University 2009

استخدام طرق جزيئيه حديثه فى تقييم مدى الكشف عن فيروس الالتهاب الكبدي الوبائي" سى" فى المرضى الخاضعين للعلاج دوائياً

كجزء متمم للحصول على درجه الماجستير في الميكروبيولوجي (تخصص علم الفيروسات والبيولوجيا الجزيئيه)

رساله مقدمه من أحمد خضر محمد هريدى بكالوريوس العلوم- قسم الميكروبيولوجى جامعه عين شمس

تحت إشراف

أ.د. محمد سيد سلامه أستاذ البيولوجيه الجزيئيه، كليه العلوم، جامعه عين شمس أ. د. أحمد بركات بركات أستاذ الفير ولوجى، قسم الميكر وبيولوجى، كليه العلوم، جامعه عين شمس

د. حسام الدين أحمد غانم مدرس الفير ولوجى، قسم الميكر وبيولوجى، كليه العلوم، جامعه عين شمس

قسم الميكروبيولوجى ــ كليه العلوم جامعة عين شمس 2009

Contents

		Page
List	List of abbreviations	
List	List of figures	
List	List of Tables	
Chaj	pter one: Introduction	1
Cha	pter Two: Review of Literature	4
1.	▶ Discovery of Hepatitis C Virus (HCV)	4
2.	► Molecular virology of HCV	5
3.	► Epidemiology of hepatitis C virus infection	13
4.	► Immuno-pathogenesis of HCV	20
5.	► Natural history and clinical manifestations	23
6.	▶ Diagnosis of Hepatitis C virus infection	25
7.	► Treatment of HCV	35
Cha	pter Three: Materials and Methods	45
3.1.	► Qualitative determination of antibodies to hepatitis C virus (anti-HCV) in human serum samples	45
3.2.	► HCV-RNA Quantitative by branched DNA (b-DNA) technology	51
3.3.	► HCV-RNA qualitative assay by Transcription mediated amplification technology (TMA)	58

3.4. ►HCV	Genotyping Assay	67
3.5. ► Quantitative determination of Alanine aminotransferase (ALT) liver biomarker		
3.6. ► Statis	stical analysis of collected data	78
Chapter Four	: Results	81
Chapter Five	: Discussion	142
Chapter Six	: 6.1.▶ Summary	157
	: 6.2.► Conclusion and recommendations	161
Chapter Seven	: References	164
• Appendixes		i
• Arabic Summ	nary	1

Acknowledgement

I would like to express my thanks and gratitude to *Professor Dr. Ahmed B. Barakat* Professor of Virology, Microbiology Department, Faculty of Science, Ain Shams University, for his kind supervision, guidance and encouragement. His continuous help and endless support are greatly appreciated for suggesting the point of this thesis, building up the hypothesis related to the results. Also, I thank him for his continues support and valuable guidance in all of the theoretical and practical aspects of this work. I am very lucky to have great opportunity to be of his students from undergraduate studies until now.

My deepest heartfelt gratefulness is due to *Professor Dr. Mohamed S. Salama* Professor of Molecular biology, Faculty of Science, and Vice President of Ain Shams University for Postgraduate Studies and Research, for his kind supervision, guidance, encouragement, continuous help and endless support. It was of my best luck to be a member of his students from undergraduate studies until now, also deep thanks for his teaching us how to take a decision not only in the scientific work but also in our life as a whole.

I am also very grateful to *Dr. Hossam El Din A. Ghanem* lecturer of Virology, Microbiology Department, Faculty of Science Ain Shams University, for his kind supervision and continuous encouragement. I also thank him for his endless support and continuous effort in all stages in the work.

Sincere thanks and gratitude is to *Prof. Dr. Momena Abdel Wahab Kamel* the Head Manger of Al Mokhtabar Laboratories company and also endless deep thanks are to *Prof. Dr. Hind El-Sherbiny*, the Vice Head Manger of Al Mokhtabar Laboratories company. Many endless thanks to *Dr. Seham Ibrahim* the general manager of Al Mokhtabar laboratories branches and research, for her

kindly agreement to carry out my work at Al Mokhtabar laboratories and for her scientific and medical help.

Many thanks and gratitude to *Dr. Sameh Refaat El sayed* the general manager of Delta area, Al Mokhtabar Laboratories and team member of Banha blood bank, for his kindly help. Thanks and gratitude is to all team work at Al Mokhtabar laboratories in Egypt

Many thanks to *Dr. Khalid Atef Abdel Aziz* team member of biomedical technology Department, National Research Center, in Cairo, for his thoughtful help and his continuous Scientific supports specially in molecular work in the study, also I thank *Ashraf Hamid* laboratory technician, Sayed Galal Hosbital, Al Azhar university, for his kind help and effort.

Many thanks to *Dr. BashirAhmed Mohammed Al-Oferiri Staff* member of IBB University, for his kind help, and effort and time.

Finally I thank *Statistcist: Abdel Aziz M Elgarf* for his help in scientific basis of statistical analysis in the study.

List of Abbreviations

ALT : Alanine aminotransferase

APC : Antigen presenting cells

AP : Alkaline phosphatase

b-DNA : Branched DNA

BSA : Bovine serum albumin

CAM : Complementary and alternative medicine

CD 81 : Cluster of differentiation

CDC : Centers for Disease Control and Prevention

cDNA : Complementary DNA

CTL : Cytotoxic T lymphocytes

DDB : Dimethyl dimethoxy brphenyl Dicarboxylate

DMS : Data Management Software

dNTPs : Deoxy nucleotide triphosphates

E1 : Envelope protein 1

E2 : Envelope protein 2

ELISA : Enzyme-Linked Immunosorbent Assay

ER : Endoplasmic reticulum

ETR : End of treatment response

EVR : Early viral response

FDA : Food and drug administration

HBV : Hepatitis B virus

HEPES : N-2Hydroxyethylpiperazine-2N- ethanesulfonic

acid

HCC: Hepatocellular carcinoma

HCV : Hepatitis C Virus

HIV : Human immunodeficiency virus

HPA: Hybridization Protection Assay

HRP : Horseradish peroxidase

IFN- α : Interferon alpha

IRES : Internal ribosome entry site

ISG : Interferon-stimulated gene

ISGF3 : Interferon-stimulated gene factor 3

ISDR : Interferon-sensitivity-determining region

ISRES : Interferon-stimulated response elements

IRF9 : Interferon regulatory factor 9

IU/ml : International unit per milliliter

Kb : Kilo bases

LDL : Low-density lipoprotein

LIA : Line immunoassay

LiPA : Line probe assay

MES : N-Morpholino ethane sulfonic acid

MHC : Major histocompatibility complex

MU : Million units

NADH : Nicotinamide Adenine Dinucleotide-Hydrogen

NaTHNaC : National travel health network and centre

NATs : Nucleic acid tests

NCR : Non coding regions

NIH : National Institutes of Health

NTPs : Nucleotide triphosphates

NK : Natural killer cell

NS : Non structure proteins

ORF : Open reading frame

PBMCs: Peripheral blood mononuclear cells

PBS: : Phosphate buffer saline

PCR : Polymerase chain reaction

PEG-interferon: Pyglated interferon

PKR: Double stranded RNA dependant protein kinase R

QS : Quantitation standard

RBV: Ribavirin

RdRp : RNA-dependent RNA polymerase

RNA : Ribonucleic acid

RT-PCR : Reverse transcription polymerase chain reaction

RTU : Relative light unit

RVR : Rapid virological response

SPSS : Statistical package for social sciences

STAT : Signal transducers and activators of transcription

SVR : Sustained virological response

TMA : Transcription mediated amplification

TMB : Tetramethylbenzidine

TNF-a: Tumor necrosis factor—a

TTU : Ten tube unit

UTR : Untranslated region

HVR : Hypervariable region

WHO : World health organization

List of figures

			Page
Fig. (a)	:	Diagrammatic structure of HCV genome	7
Fig. (b)	:	Schematic diagram of the HCV life cycle	12
Fig. (c)	:	HCV epidemiology throughout the world, showing the high incidence in Egypt compared to other countries	14
Fig. (d)	:	Proposed mechanism of interferon alpha action against HCV	38
Fig. (E)	:	Diagram of the target capture specimen processing method for the Gen-Probe TMA assays	59
<i>Fig.</i> (<i>F</i>)	:	Diagrammatic representation of the hybridization procedure and the color development	68
Fig. (G)	:	INNO-LiPA pattern obtained with the Versant HCV Genotyping assay	69
Fig. 1	:	The prevalence of HCV-Ab in 403 random individuals	81
Fig. 2	:	The percent of viral Self clearers (Category one) with contrast to patients of persistence viremias (Category two)	84
Fig. 3	:	Diagrammatic representation of different patients' response behaviors to PEG-interferon α 2a / RBV therapy	102

Fig. 4 105 Diagrammatic representation of different sustained responses or non responses of patients to PEG-interferon a 2a / RBV therapy with respect to different HCV subtypes 108 Fig. 5 Diagrammatic representation of relation between sustained response or non response of patients to PEG-interferon a 2a /RBV therapy and HCV-RNA quantitative b-DNA results at week 4 Fig. 6 111 Diagrammatic representation of relation between sustained response or non response of patients to PEG-interferon α 2a / RBV therapy and b-DNA results at week 12 *Fig.* 7 representation 113 Diagrammatic between sustained response or non response of patients to PEG-interferon a 2a /RBV therapy and mean of baseline viral load in all examined patients Fig. 8 117 Diagrammatic representation of cutoff viral load with respect to sustained response or non response of patients to therapy (Cutoff <= 416712 IU/ml) Fig. 9 120 Diagrammatic correlation between detection of HCV-RNA by TMA at week 24 results and sustained response or non response of patients to PEG-interferon a 2a therapy Fig. 10 123 Diagrammatic correlation between detection

of HCV-RNA by TMA at week 48 results

- and sustained response or non response of patients to PEG-interferon α 2a /RBV therapy
- Fig. 11 : Diagrammatic correlation between HCV- 125 RNA by TMA at week 72 results and sustained response or non response of patients to PEG-interferon α 2a /RBV therapy
- Fig. 12 : The comparison between biochemical 132 response and non response of patients to PEG- interferon α 2a / RBV therapy (line)
- Fig. 13: The comparison between sustained 134 biochemical response and non response of patients to PEG-interferon RBV treated patients (Histogram)
- Fig. 14: Diagrammatic representation of correlation 138 between mean ALT values and HCV-RNA detection by TMA

List of Tables

		Page
Table (a)	: First round PCR thermal profile as HCV first profile.	73
Table (b)	: Second round PCR thermal profile as HCV second profile	74
Table 1	: HCV-RNA viral load obtained by b-DNA with TMA confirmation in patients of Category one	83
Table 2	: Baseline viral load of HCV-RNA by b-DNA technique in patients of Category two	87
Table 3	: Detection of HCV Genotype (s) in Category two patients by INNO LiPA technique	88
Table 4	: Viral load of HCV-RNA by b-DNA technique at week 4 from therapy	89
Table 5	: Viral load of HCV-RNA by b-DNA technique at week 12 from therapy	91
Table 6	: Detection of HCV-RNA in patients of Subgroup (A1) at week 24 of treatment	93
Table 7	: Detection of HCV-RNA in patients of Subgroup (A2) at week 24 of treatment	95
Table 8	: Viral load of HCV in patients of group (B) at week 24 from therapy	96
Table 9	: Detection of HCV-RNA at week 48 of therapy (End of treatment)	98

Table 10 : Detection of HCV-RNA at week 72 from 100 therapy (Sustained virological response) Table 11 : Response of patients to PEG- interferon α 101 2a / RBV Therapy at different intervals of therapeutic treatment Table 12 : The sustained response or non response of 104 patients to PEG-interferon a 2a / RBV therapy with respect to different HCV subtypes Table 13 : The correlation between sustained 107 responder or non responder patients to PEG-interferon α 2a /RBV therapy and HCV-RNA quantitative value applied by b-DNA results at 4 weeks of treatment Table 14 : The correlation sustained 110 between responder or non responder patients to PEG-interferon α 2a /RBV therapy and HCV-RNA quantitative value applied by b-DNA results at 12 weeks of treatment Table 15 between baseline mean viral : Correlation 112 load and sustained response or non response of patients to PEG-interferon a 2a / RBV therapy Table 16 The correlation between sustained 115 : responder and non responder patients to PEG-interferon α 2a /RBV therapy and HCV-RNA quantitative value applied by b-DNA results at baseline (zero time of

treatment)