STUDY OF GROWTH DIFFERENTIATION FACTOR 15 EXPRESSION IN PATIENTS WITH BETA THALASSEMIA INTERMEDIA

Thesis

Submitted for fulfilment of the M.Sc. Degree in Pediatrics

Presented By

Rania Mohamed Wagdy Salah El-Deen

(M.B, Bch.)

Faculty of Medicine- Cairo University

Supervised

Prof. Dr.Mona Hassan El-Tagy

Professor of Pediatrics

Cairo University

Dr. Dalia Said Mossalam

Assistant Professor of Pediatrics

Cairo University

Dr. Nadia Ibrahim Sewelam

Lecturer of Clinical Pathology

Cairo University

Faculty of Medicine

Cairo University

2014

Acknowledgment

First, grace and foremost thanks are duo to ALLAH, most Gracious, most merciful, for blessing this work, as a part of His generous help throughout our lives.

I would like to express my sincere gratitude and respect to Professor Doctor MONA HASSAN EL-TAGY, Professor of Pediatrics, Cairo University, for her continuous guidance and supervision, her kind encouragement and support throughout the entire period of the study.

It is my pleasure to express my unlimited appreciation and deepest thanks to Doctor **DALIA SAID MOSSALAM**, Assistant Professor of Pediatrics, Cairo University, for her continuous supervision and great help.

I do appreciate the kind participation of Doctor **NADIA IBRAHIM SeweLAM**, Lecturer of Clinical pathology, Cairo University, for the effort she exerted to help me and for her guidance and great support throughout the whole period of the study.

I am indebted to every patient included in this study and also their parents for their corporation and their trust. I wish them all the best of health and happiness.

I am deeply grateful to my family, colleagues and friends.

Lastly, I would like to thank everyone who helped in completing this work.

Abstract

- **Background:** The thalassemia syndromes represent the most common causes of ineffective erythropoiesis. The increased but ineffective erythropoiesis resulting in tissue iron overload induces numerous endocrine diseases, hepatic cirrhosis, cardiac failure and even death.
- **Objectives:** we aim to study GDF15 levels in β thalassemia intermedia patients and to correlate its level to their iron status and different clinical and laboratory disease parameters.
- Method: This is case control study conducted on 25 pediatric patients under 18 years with beta thalassemia intermedia and 30 healthy children taken as control group. GDF 15 level was performed using (ELISA) kit in serum samples that obtained from children of both groups. Abdominal examination, frequency of blood transfusion, Complete blood picture, Reticulocytic count, liver function tests, serum ferritin were done in case group to assess severity of beta thalassemia intermedia.
- **Result:** . Our results showed that GDF 15 levels were statistically higher in cases compared to control (P Value < 0.05).
- **Conclusion:**GDF15 level in our study represent a first step for its use as biomarker in thalassemia patients although future studies may be needed before its routine use.
- **Key words**: Thalassemia intermedia (TI), Growth Differentiation Factor 15 (GDF 15), Ferritin

Table of Contents

Titles	Page
List of abbreviations	I
List of Tables	V
List of Figures	VI
Introduction and aim of work	1
Review of literature	5
Chapter 1:Thalassemia intermedia	6
Definitions and incidence	9
The molecular basis and genetic background	10
The pathophysiology	17
The clinical diagnosis	20
The laboratory diagnosis	29
Prevention	38
Management	39
Chapter 2: Growth Differentiation Factor 15	52
GDF15 gene	53
Regulation of GDF15 expression	54
GDF15 structure	56
Sites of GDF15 production	57

Titles	Page
GDF15 synthesis and stimulation	58
Physiological functions of GDF15	59
Pathophysiological functions of GDF15	63
Methods of determination of GDF15	79
Patients and methods	82
Results	90
Discussion	106
Conclusion & recommendations	112
Summary	116
References	119
Arabic summary	

List of Abbreviations

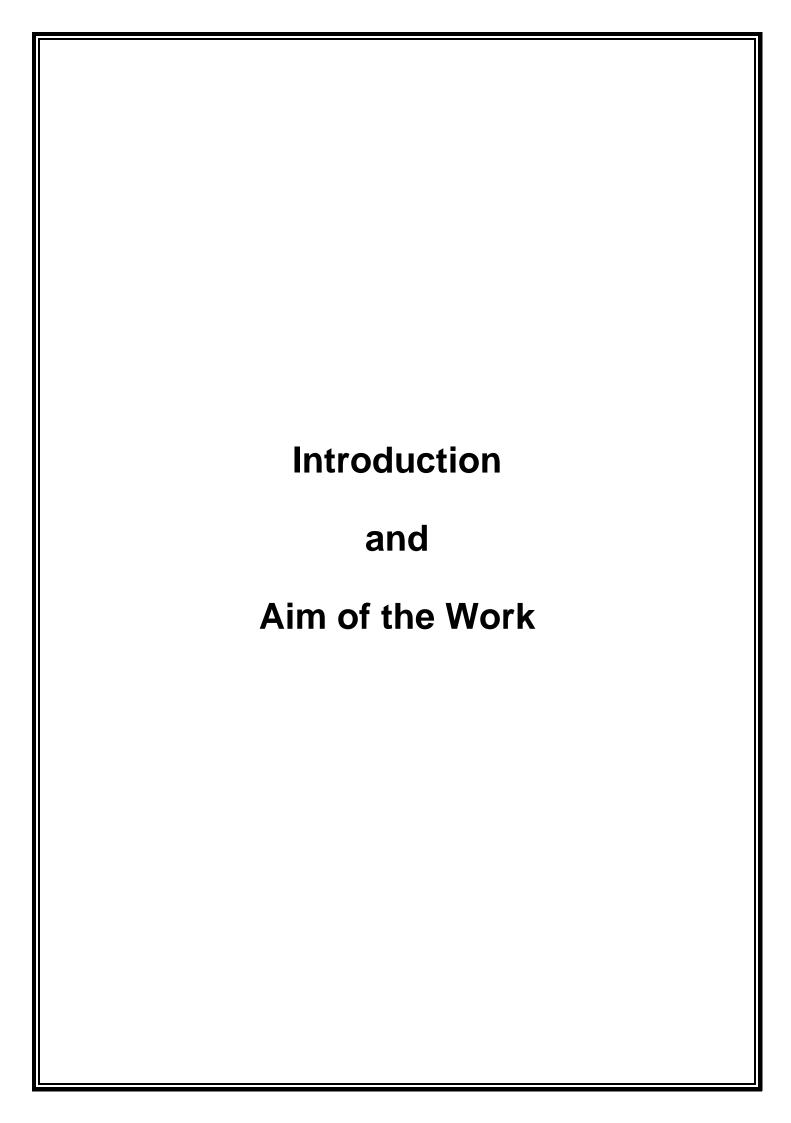
3'UTR	3' untranslated region
AFSC	Control sample containing A, F, S, and C hemoglobins
ALT	Alanine transaminase
AST	Aspartate transaminase
АТО	Arsenic trioxide
ВМ	Bone marrow
BMPRs	Bone morphogenic protein receptors
BMPs	Bone morphogenic proteins
СВС	Complete blood count
CT scanning	Computerised tomography
d	Day
DFO	Desferoaxamine
DFP	Deferiprone
DNA	Deoxyribonucleic acids
DVT	Deep vein thrombosis
ECG	Electrocardiogram
EDTA	Ethylene diamine tetra-acetic acid
ЕМН	Extramedullary hematopoiesis
ЕРО	Erythropoietin
ESR	Erythrocyte sedimentation rate
g	Gram

GDF15	Growth differentiation factor 15
Hb	Hemoglobin
Hb A	Adult hemoglobin
Hb F	Fetal hemoglobin
HbE	Hemoglobin lepore
Hct	Hematocrit
HFE	HFE gene product
HJV	Haemojuvelin
HPFH	Hereditary persistence of fetal hemoglobin
HPLC	High-performance Liquid chromatography
нѕст	Hematopoietic stem cell transplantation
HSM	Hepatosplenomegaly
HU	Hydroxyurea
ICL 670	Iron chelator 670 (Deferasirox)
IL-1	interleukin -1
IL6R	IL-6 receptor
IVS	Intervening sequence
Kg	Kilogram
L	Liter
L 1	Deferiprone
LIC	liver iron concentrations
m	Millimeter
МСН	Mean corpuscular hemoglobin

мснс	Mean corpuscular hemoglobin concentration
MCV	Mean corpuscular volume
mg	Milligram
MIC-1	Macrophage inhibitory cytokine – 1
min	Minute
mmHg	Millimeter mercury
MMP	Mitochondrial membrane potential
mo	Month
Mr	Monomer molecular mass
MRI	Magnetic résonance imaging
mRNA	Messenger ribonucleic acid
NAG-1	Nonsteroidal anti-inflammatory drug activated gene
ng	Nanogram
nt	Nucleotide
РВ	Peripheral blood
PCR	Polymerase chain reaction
PDF	Prostate derived factor
pg	Pico gram
PHT	pulmonary hypertension
PLT	Platelets
PTGFb	Placental transforming growth factor-b
RBC	Red blood cell
RE	Reticuloendothelial

SCF	Stem cell factor
sec	Second
sHJV	Soluble form of Haemojuevelin
Smad	Small molecules against decapentaplegic proteins
TF	Transcription factor
Tf	Transferrin
TGF-β	Transforming growth factor-β
TI	β-thalassemia intermedia
TLC	Total leucocytic count
ТМ	Thalassemia major
TWSG1	Twisted gastrulation
Тх	Thromboxne
U	Unite
USA	United States of America
WBC	White blood cells
WHO	World Health Organization
yrs	Years

List of Tables


Ser.	Titles	Page
Table (1)	Beta-Thalassemias Classification:	8
Table (2)	The Common Genetic Interactions that Underlie the Phenotypes of Thalassemia Intermedia	11
Table (3)	The mild β-Thalassemia Mutations	12
Table (4)	Helpful Clues to Differentiate Major from Intermedia:	21
Table (5)	Critera for Diagnosis of Thalassemia Intermedia.	24
Table (6)	Indications of Transfusions in Thalassemia Intermedia Patients:	41
Table (7)	Indications for Splenectomy in Thalassemia Intermedia	49
Table (8)	Comparisons between demographic data in the two groups	91
Table (9)	Clinical examination findings in Thalassemia intermedia patients	95
Table (10)	Comparisons between laboratory investigations in the two groups	98
Table (11)	Comparisons between GDF-15 in the two groups	100
Table (12)	Correlation between GDF-15 and different variables	101
Table (13)	Comparisons between GDF-15 levels in cases with and without Hepatomegaly	103
Table (14)	Comparisons between GDF-15 levels in cases with Splenomegaly and Splenectomy	104
Table (15)	Comparisons between GDF-15 levels in cases who received and didn't receiv Chelatoin Therpy	105

List of Figures

Ser.	Titles	Page
Figure (1):	Practical approach to the investigating of	16
	thalassemia intermedia using molecular	
	studies presently available. +/+ refers to	
	the presence of both $\boldsymbol{\alpha}$ thalassemia and	
	–158 Gγ C→T mutation; +/– to the	
	presence of one factor; -/- to the	
	absence of both (Camaschella and	
	Cappellini, 1995).	
Figure (2):	β-thalassemia. Note the bizarre	30
	erythrocyte morphology and the	
	nucleated erythrocyte (Kerm, 2002).	
Figure (3):	Hemoglobin electrophoresis.	31
F' (4)	D. P. L. C. L. C.	0.5
Figure (4):	Radiological appearance of the skull in	35
	homozygous β-thalassemia. " hair on	
	end appearance" (Yaish, 2007).	
Figure (5):	Genomic structure and transcription for	54
	protein production of matured GDF15	
	(Tanno et al., 2010).	
	,	

Ser.	Titles	Page
Figure (6):	Known upstream stimulators and	55
	functions of GDF15 (Ago and	
	Sadoshima,2006).	
Figure (7):	Regulation of gene transcription by	68
	BMPs (Camaschella, 2009)	
Figure (8):	Multiple pathways for hepcidin regulation	73
	(Pietrangelo, 2010).	
Figure (9):	Model of iron homeostasis in patients	76
	with ineffective erythropoiesis (Tanno et	
	al.,2010).	
Figure (10):	GDF15 expression in bone marrow from	78
	a patient with thalassemia and bone	
	marrow from a healthy volunteer (Tanno	
	et al., 2010).	
Figure (11):	Bar chart representing mean weight	92
	values in the two groups	
Figure (12):	Bar chart representing mean height	92
	values in the two groups	
Figure (13):	pie chart representing prevalence of	94
	similar and no similar condition in	
	Thalassemia intermedia	
Figure (14):	Pie chart representing prevalence of	94
	consanguinity and no consanguinity in	
	Thalassemia intermedia	

Ser.	Titles	Page
Figure (15):	Bar chart representing clinical	96
	examination findings in Thalassemia	
	Intermedia	
Figure (16):	Bar chart representing mean HB, MCV,	98
	MCHC and TLC in two groups	
Figure (17):	Bar chart representing mean PLT in the	98
	two groups	
Figure (18):	Bar chart representing mean GDF-15 in	100
	the two groups	
Figure (19):	Scatter diagram representing inverse	102
	correlation between frequency of blood	
	transfusion and GDF-15	
Figure (20):	Scatter diagram representing inverse	102
	correlation between Hb level and GDF-	
	15	
Figure (21):	Bar chart representing mean GDF-15 in	103
	subjects with and without Hepatomegaly	
Figure (22):	Bar chart representing mean GDF-15 in	104
	subjects with Splenomegaly and	
	Splenectomy	
Figure (23):	Comparisons between GDF-15 levels in cases who received and didn't receiv	105
	Chelatoin Therpy	

Introduction

The thalassemia syndromes (alpha and beta thalassemia) represent the most common causes of ineffective erythropoiesis (Tanno et al., 2010). The increased but ineffective erythropoiesis resulting in tissue iron overload (Casanovas et al., 2011) induces numerous endocrine diseases, hepatic cirrhosis, cardiac failure and even death (Weatherall and Clegg, 2001).

Hepcidin regulated intestinal iron absorption represents a principal mechanism for iron homeostasis in humans (Donovan et al., 2006). It is commonly believed that ineffective erythropoiesis inhibits expression of hepcidin, a hepatic peptide hormone secreted from liver that regulates the release of iron into the blood stream from duodenal enterocytes, hepatocytes and macrophages (Ramey et al., 2010). It was shown that hepcidin levels are decreased in individuals with beta thalassemia syndromes (Kattamis et al., 2006).

It's hypothesized that the erythroid expansion could influence the regulation of hepcidin expression through systemic release of transforming growth factor β (TGF- β)