Mean Platelet Volume: Relation to Glycemic Control and Cardiovascular Complications in Patients with Type 2 Diabetes Mellitus

Thesis

Submitted for the partial fulfillment of master degree in clinical pathology by

Alaa Samir Abd El-Malek

M.B.B.Ch, (2010, Ain Shams University) Under the supervision of

Prof. Mohamed Amin Mekawy

Professor of Clinical Pathology Faculty of Medicine, Ain Shams University

DR. Gehan Mostafa Hamed Mostafa

Assist. Professor of Clinical Pathology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2017

www.alyageen.org

سبحانك لا علم لنا الا ما علمتنا انك أنت العليم الحكيم

Acknowledgement

First great thanks to "Allah" who gave me the power to complete this work. Without his care nothing could be achieved.

I would like to express my deeply felt gratitude to **Prof. Dr. Mohamed Amin Mekawy**, Professor of clinical pathology, faculty of medicine, Ain shams university for his generous help and supervision. I appreciated his constant encouragement.

I am indebted to **Dr. Gehan Mostafa Hamed**, Assistant Professor of clinical pathology, faculty of medicine, Ain shams university for her guidance, valuable inputs, assistance and encouragement along the way. Dr. gehan's brilliant contributions and effective review of the work is highly acknowledged.

With thanks to God almighty I dedicate this thesis to my parents, my sisters and brother who provided me with every mean of care and support throughout my life and helped me greatly in the completion of this work.

List of Contents

	Page
<u>List of Abbreviations</u>	
<u>List of Tables</u>	
<u>List of Figures</u>	
<u>Introduction</u>	
Aim of the work	3
Review of literature	
Chapter 1	4
Megakaryopoiesis	4
Regulation of megakaryopoiesis and platelet production	5
Platelets	8
Platelet morphology, structure and function	11
Platelet counting	18
Platelet parameters	19
The mean platelet volume	22
Mean platelet volume in different diseases	22
Chapter 2	26
Diabetes mellitus	26
Epidemiology	26
Risk factors	27
Types of diabetes mellitus	27
Complication of diabetes mellitus	30
Diabetes and cardiovascular disease	33
Diagnosis of diabetes mellitus	34
Platelets and diabetes mellitus	39
Subjects and methods	42
Results	
Discussion	
Summary	
Conclusion	
Recommendations	
References	
Arabic summary	

List of Abbreviations

ADA	The American Diabetes Association
ADP	Adenosine 5'-diphosphate
ATP	Adenosine triphosphate
BFU-E	Burst-forming unit-erythroid
ВМІ	Body mass index
CD62P	P-Selectin
CE	Cholesterol esterase
CFU-MK	Colony-forming unit-megakaryocyte
CHD	Coronary heart disease
с-МрІ	Thrombopoietin receptor (Myeloproliferative leukemia virus oncogene)
CVD	Cardiovascular disease
СХС	Chemokine
DM	Diabetes mellitus
DTS	Dense tubular system
DVT	Deep venous thrombosis
EDTA	Ethylenediaminetetraacetic acid
FBS	Fasting blood sugar
FOG-1	Friend of GATA
FPG	Fasting plasma glucose
GATA-1	GATA-binding factor 1
GDM	Gestational Diabetes Mellitus
GP	Glycoproteins
GPIb	Glycoprotein 1b
GPIbα	Glycoprotein Ibα

	List of Abbreviations (Con.)
GPIIb	Glycoprotein IIb
GPIX	Glycoprotein IX
GPV	Glycoprotein V
HbA1c	Hemoglobin A1c
HDL	High-density lipoprotein
HPLC	High Performance Liquid Chromatography
HSC	Hematopoietic stem cell
IDF	International Diabetes Federation
IFG	Impaired Fasting Glucose
IGT	Impaired glucose tolerance
IL-3	Interleukin-3
ITP	Immune thrombocytopenic purpura
LDL	Low-density lipoprotein
LIF	Leukemia-inhibitory factor
MCV	Mean red cell volume
MEP	Megakaryocyte-erythroid progenitor
MODY	Maturity-onset diabetes of the young
MPV	Mean platelet volume
NDDG	The national diabetes data group
ocs	Open canalicular system
OGTT	Oral glucose tolerance test
PAF	Platelet activating factor
PCT	Plateletcrit
PDGF	Platelet derived growth factor
PDW	Platelet distribution width
PF4	Platelet factor

	List of Abbreviations (Con.)
P-LCR	Platelet large cell ratio
PS	Phosphatidylserine
SD	Standard deviation
SDF-1	Stromal cell-derived factor 1
TG	Triglycerides
TPO	Thrombopoietin
TXA2	Thromboxane A2
VLDL	Very low density lipoprotein
VWF	Von Willebrand Factor
WHO	World Health Organization
β-TG	Plasma beta-thromboglobulin

List of Tables

Table number	Title	Page
1	Diagnostic criteria for diabetes mellitus and categories of increased risk for diabetes mellitus and prediabetes	36
2	Strengths and limitations of using HbA1c for diabetes mellitus diagnosis	38
3	The comparison between all studied patients and controls as regards their epidemiological, clinical and laboratory data	55
4	The comparison between the epidemiological features of the different Studied groups	57
5	The comparison between patient subgroups and the controls as regards laboratory parameters	58
6	Correlations of MPV to different variables among the studied groups	60
7	Relations between MPV and cardiovascular risk factors	62

List of Figures

Figure number	Title	Page
1	Overview of megakaryopoiesis	4
2	Visualization of megakaryocytes and platelet production in the lung circulation	9
3	Stained peripheral blood smear showing numerous platelets	11
4	Ultrastructural features observed in thin section electron micrographs of discoid platelets cut in the cross section and equitorial planes	12
5	The functions of platelets, procoagulant, aggregating and contracting platelets	17
6	Typical platelet size distribution in an automated haematology analyser	20
7	Complications of type 2 diabetes	30
8	The difference between quiescent and activated platelets	41
9	Comparison between control and patients according to MPV and HbA1c	56
10	Comparison between all studied groups according to MPV and HbA1c	59
11	Correlation between MPV and HbA1c in all studied groups	61

12	Correlation between MPV and blood glucose in all	61
	studied groups	
13	Relation between MPV and cardiovascular risk factors in all patients	63
14	Relation between MPV and cardiovascular risk factors in patients with cardiovascular complications	63
15	ROC curve showing the performance of MPV in differentiating the control group from the patients group	64

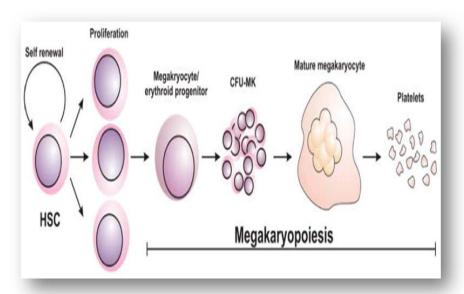
INTRODUCTION

iabetes mellitus (DM) is a major global problem affecting health children, adolescents, and adults. According to the World Health Organization, approximately 180 million people worldwide currently have type 2 DM, the number of people with type 2 DM is estimated to double by 2030 (Mahsud et al., 2010). Diabetes mellitus is a complex metabolic health syndrome characterized by chronic hyperglycemia (Dermirtunc et al., 2009). Generally, the injurious effects of hyperglycemia are separated into macrovascular complications (coronary artery disease, peripheral arterial disease, and stroke) and microvascular (diabetic nephropathy, neuropathy, complications retinopathy) (Fowler, 2008).

Vascular disorders, such as coronary artery disease enhance the morbidity and the mortality of type 2 DM (*Chiha et al.*, 2012), accounting for more than 17.5 million deaths worldwide (*Moore et al.*, 2009). The prevalence of diabetic vascular complications is higher in people with poor glycemic control, longer duration of DM, associated hypertension and obesity (*zuberi et al.*, 2008).

Platelets are known to have a major effect on the formation of atherosclerotic plaques and, therefore, play an essential role in the pathogenesis of atherothrombosis. Larger and hyper-reactive platelets accelerate the formation of an intracoronary thrombus, leading to a cascade of clinical events, such as, acute coronary syndrome (*Elsenberg et al.*, 2009). An increase in platelet aggregability is associated with unstable angina and myocardial infarction. Platelet size and activity are correlated, and mean platelet volume (MPV) was found to be increased before acute myocardial infarction (*Perege et al.*, 2010).

Platelet volume is a marker of platelet function and activation. It can be quantified as mean platelet volume by clinical hematology analyzers (*Hekimsoy et al.*, 2004). *Kakouros et al.* (2011) reported that hyperglycemia causes larger platelets, which can synthesize more prothrombotic factors such as thromboxane A2, than normal platelets. It is also suggested that the increased platelet activity enhances vascular complications in those patients (*Ulutas et al. 2014*). Moreover, cardiovascular complication prevalence of type 2 DM may be associated with increased hemoglobin A1c (HbA1c) and MPV (*Han et al., 2013*).


Few studies have been conducted on the association between MPV and HbA1c as a marker of glycemic control and cardiovascular complications in type 2 DM.

Aim of the Work

This study aims to measure MPV in relation to HbA1c to assess the usefulness of MPV as a marker of glycemic regulation and to detect its relation to cardiovascular complications in type 2 DM.

MEGAKARYOPOIESIS

Megakaryocytes, as all blood cells, originate from the hematopoietic stem cell (HSC). The HSC gives rise to progressively committed progenitors, involving the megakaryocyte-erythroid progenitor (MEP). MEPs are bipotential precursors that progress to cells of both megakaryocytic and erythroid lineages (*Geddis*, *2010*). The MEP differentiates into the burst-forming unit-erythroid (BFU-E) and the colony-forming unit-megakaryocyte (CFU-MK). The CFU-MK is a cell that progresses to a simple colony containing from three to fifty mature megakaryocytes (*Kaushansky*, *2008*) (figure1).

Figure (1): Overview of megakaryopoiesis. Megakaryocytes are derived from the hematopoietic stem cell and proliferate and differentiate under the influence of thrombopoietin (TPO) (*Geddis*, 2010).

The megakaryocyte passes through a unique maturation process that involves polyploidization, formation of an extensive internal demarcation membrane system and lastly formation of proplatelet processes. Platelets are released from these processes to vascular sinusoids within the bone marrow (*Geddis*, 2010). The platelet life-span is 10 days, in the resting state about 30% of platelets are sequestered in the spleen (*Briggs et al.*, 2007).

Regulation of megakaryopoiesis and platelet production:

Extracellular mechanisms:

Thrombopoietin (TPO) is the primary controller of thrombopoiesis. It stimulates platelet production in a log-linear manner to levels 10-fold higher than baseline without the peripheral blood red or white cell counts are being affected (*Kaushansky*, 2008). The platelet counts can be reduced with an inhibitor against TPO with no impairment of primary hemostasis (*Kaushansky 2006; Tucker et al. 2010*).

The revelation of TPO, and its megakaryocyte specific receptor c-Mpl, reformed the field of megakaryocyte and platelet biology. This discovery assisted development of in vitro cell culture systems that reconstruct megakaryocyte differentiation, maturation, proplatelet extension, and platelet