Abstract

Introduction: Cervical cancer is considered the third most common gynecological malignancy in women. Although patient now survive longer due to radiation therapy and more effective chemotherapy, it remains the most frequent cause of death for women in developing countries.

Aim of the Work: To highlight the role of magnetic resonance spectroscopy in the diagnosis of uterine cancer cervix.

Methodology: Cervical cancer is both the fourth most common cause of cancer and the fourth most common cause of death from cancer in women and in Egypt Cervical cancer ranks as the second most frequent cancer among women. Functional MRI is becoming established in the evaluation of gynecologic malignancies including uterine cervical malignancies. Parameters derived from functional MRI may be used toexamine tumor vascularity Tissue micro architecture, hypoxic status and metabolic profile features that may be Exploited for tumor characterization, staging and response to treatment.

Conclusion: MRS has lower sensitivities and requires much longer acquisition times and more complex data processing, and with clinicians unfamiliar with the technique, these factors continue to limit the application of MRS in the clinical setting. Currently, there are methodologies that optimize the combined signals from multi element coil arrays to improve detection of low concentration metabolites in MRS. And, in order to improve its sensitivity and spectral resolution. In addition, the availability of higher field strength MR systems can reduce some of these limitations.

Keywords: Role of MR Spectroscopy, Diagnosis of Uterine Cervical Cancer

Contents

Subjects	Page
List of abbreviations	II
List of Figures	III
List of Tables	VII
• Introduction	1
Aim of the Work	3
• Chapter (1): Anatomy of the uterine cervix	4
• Chapter (2): Pathology & Staging of utering cancer cervix	
• Chapter (3): MR imaging of uterine cancer cervix diagnosis	40
• Chapter (4): MR spectroscopy in the diagnost of uterine cancer cervix	
• Chapter (5): Modalities of functional MRI in the diagnosis of uterine cancer cervix	
• Chapter (6): Management of cervical carcinoma	
Summary and Conclusion	135
• References	138
Arabic Summary	

List of Abbreviations

Abbrev.	Meaning
A	
ADC	Apparent Diffusion Coefficient
AJCC	American Joint Committee on Cancer
ATPs	Adenosine Triphosphates
В	•
B0	Magnetic field
BOLD	Blood Oxygen Level Dependent
С	
CCS	Cervical Cancers
СНо	Choline
CIN	Cervical Intraepithelial neoplasia
CIS	Carcinoma in situ
Cr	creatine
CSCC	Cervical squamous Cell Carcinoma
CT	Computed Tomography
CTV	Clinical Target Volume
D	
DCE-	Dynamic contrast enhanced
PWI	Perfusion weighted imaging
DCE-	Dynamic contrast enhanced
MRI	Magnetic resonance imaging
DNP-	Dynamic nuclear polarization
MRS	Magnetic resonance spectroscopy
DSC-	Dynamic susceptibility contrast
PWI	Perfusion weighted imaging
DW	Diffusion weighted
DWI	Diffusion weighted imaging

E	
EBRT	External beam radio therapy
ED	Eddy Current
\mathbf{F}	
FID	Free induction decay
FIGO	Federation of gynecology and obstetrics
FOV	Field of view
\mathbf{G}	
GD-	Gadolinium Diethylene Triamine
DTPA	Pentaacetic Acid
GTV	Gross Target Volume
H	
1H-MRS	Proton-Magnetic resonance spectroscopy
HR-MAS	High resolution –magic angle spinning
HPV	Human Papilloma Virus
Ι	_
IVU	Intra venous urography
L	
Lac	Lactate
LDA	Linear Discriminate analysis
LEEP	Loop Electrical excision procedure
LSIL	Low grade intraepithelial lesion
M	
Mi	Myoinositol
MRI	Magnetic Resonance Imaging
MRS	Magnetic Resonance Spectroscopy
N	1 17
NAA	N- acetyl aspirate
NEX	Number of excitation
NMR	Nuclear Magnetic Resonance
NTP	Nuclside triphosphate
NPV	Negative predictive value
-	

P	
Pap	Papanicolaou
PO2	Pressure of oxygenation
PCr	Phospho creatine
PET-	Positron emission tomography- with
FDG	Fluro- deoxy –D-glucose
Pi	Inorganic phosphate
PRESS	Point Resolved Spatially Localized Spectroscopy
31P-	Phosphorus -31 Magnetic Resonance
MRS	Spectroscopy
PPM	Parts Per million
PPV	Positive predictive value
PWI	Perfusion Weighted Imaging
R	
RBV	Relative blood volume
ROI	Region of interest
RF	Radiofrequency
S	
SNR	Signal to noise ratio
SCJ	Squamocolumnar junction
STEAM	Stimulated Echo Acquisition Mode
T	1
tCho	Total choline
TE	Time of Echo
TR	Time of Repetition
T1W	T1-weighting; MRI sequence in which
	Short TR (time of repetition) And Short
	TE(time of echo) applied
T2W	T2-weighting; MRI sequence in which long
	TR(time of repetition) and long TE(time of
	echo) applied.

3 List of Abbreviations

U US	Ultrasonography
V VLDL	Very low density lipoprotein

List of Figures

No.	<u>Figures</u>	Pa ge
1	Urogenital of female human embryo of eight and a half to nine weeks old. (Gray ,2001)	4
2	Anatomic sketch of coronal view showing the uterine cervix (Klüner and Hamm, 2007).	6
3	Diagram of the peritoneum of the female pelvis in para median Section (Skandalakis et al., 2004).	7
4a-b	Lymphatic drainage of the cervix. (Pannu et al., 2001)	9
5	The major ligament of the cervix(Skandalakis et al., 2004)	10
6	Blood supply of the uterus (Gray, 2001).	12
7	Histological section showing squamo columnar junction (www. Eurocytology.eu/static //LP1ContentAcontD.html)	16
8 A,B, C,D	Metaplastic changes in the cervix and its physiological basis (www.eurocytology.eu/static//eng//LP1ContentAcont.html)	18
9	The histological grading of cervical intraepithelial neoplasia (CIN) (Edessy et al ,2013)	20
10	Cervical carcinoma with exophytic growth in a 44-year-old woman(gross type) (Okamoto et al., 2003)	22
11	Squamous cell carcinoma of the cervix, large cell non Keratinizing type(Wei, 2009)	23

No.	<u>Figures</u>	Pa ge
12	Squamous cell carcinoma of the cervix large cell keratinizing Type. (Wei, 2009)	24
13	Micro invasive adenocarcinoma of the cervix . (Wei, 2009)	92
14 a-b	Normal Cervix in T2 WI in Axial and sagittal views (Mahajan et al, 2013).	44
15	Cervical carcinoma with exophytic growth in a 44-year-old w woman in Sagittal T2-weighted MR image (Okamoto et al., 2003)	46
16	Cervical carcinoma with endophytic growth pattern in Sagittal T2-weighted MR image (Okamoto et al., 2003)	47
17 a-b	Squamous cell carcinoma of cervix (stage IB1). Axial and sagittal T2W MR images(Mahajan et al ,2013)	49
18 a-b	Carcinoma of the cervix (stagIB2). Axial and sagittal T2W MR images (Mahajan et al ,2013).	49
19 a-b	Adenocarcinoma of uterine cervix (stage IIA). Sagittal and axial T2W MR images (Mahajan et al ,2013).	50
20 a-b	Squamous cell carcinoma of the uterine cervix (sage IIB) (Axial And coronalT2W MR images (Mahajan et al ,2013).	50
21	Poorly differentiated squamous cell carcinoma (stage IIIA) Sagittal. T2WMR image(Mahajan et al ,2013).	52
22 a-b	Cancer of uterine cervix (stage IIIB). Axial and coronal T2W MR images (Mahajan et al ,2013).	52

No.	<u>Figures</u>	Pa ge
23 a-b	Squamous cell carcinoma in two different patients (stage IVA). Sa sagittal T2W image(Mahajan et al ,2013).	54
24 a-b	Poorly differentiated adenocarcinoma in a 54-year-old. Recurrent mass (stage IVA) .Axial and Sagittal T2WMR images (Mahajan et al, 2013).	55
25 a-b	Lymphatic pathways of spread of cervical carcinoma (Wittekind et al., 2005).	59
26 a-b	Pre- and post treatment. With radiotherapy of the cancer cervix in the cervix and upper vagina on T2W sagittal MR images (Mahajan et al ,2013).	60
27 a-b	Post treatment adenocarcinoma of cervix stage (Ib1) with radical hysterectomy. Axial T2-weighted MR images (Kaur et al., 2003).	62
28 a-b	Recurrent cervical carcinoma after hysterectomy. Sagittal and axial T2 W MR images. Sagittal and axial T1 weighted images 1 min after administration of Gd-DTPA. (Zaspel and Hamm, 2007).	63
29 a-b	Post operative case of Cancer cervix in Sagittal T2W and Oblique axial T1 fat-suppressed post-gadolinium MR images (Mahajan et al ,2013).	64
30 a-b	A Case of cervical cancer with Intracavitary delivery device is placed in cervix. In sagittal and axial T2W MR images(Beddy et al, 2011)	67
31 a-b	A Case of cervical cancer before and after insertion of probe and packing In intracavitary brachytherapy in axial T2W M MR images (Beddy et al, 2011)	67

No.	<u>Figures</u>	Pa ge
32 a-b	A Case with cervical cancer. Sagittal T2-weighted MR image shows that applicator tip of intracavitary brachytherapy probe showing perforated fundus of uterus and posterior vaginal vault (Beddy et al., 2011)	68
33 a-b	A Case with cervical cancer. Sagittal T2-weighted MR images showing incorrect positioning of intracavitary brachytherapy probe (Beddy et al , 2011)	69
34 a-b	A case of cervical cancer. Sagittal T2-weighted MR image of pelvis obtained during interval between external beam radiotherapy and intracavitary brachytherapy and probe is correctly position after insertion of probe again (Beddy et al ,2011)	70
35 a-b	A case of cervical cancer .sagittal and coronal T2-Weighted MR images and showing complication after radiotherapy with free fluid in pouch of Douglas and hydrosalpinges (Beddy et al, 2011)	71
36	A case of cervical cancer. coronal T2-weighted MR image of pelvis shows diffuse sigmoid colitis in patient undergoing intracavitary brachytherapy. (Beddy et al, ,2011)	72
37	Multiple MR internal Coils for Prostate, Cervix, and Colon. (www.medrad.com//Prostate-cervix colon- Coil-photos)	85
38	Axial T2 - W MR image of the cervix used for localization of voxel for spectroscopy (Lee et al ,1998)	88

No.	<u>Figures</u>	Pa ge
39	Schematic overview of the pulse sequences PRESS and STEAM (Van der Graaf et . al. ,2010)	90
40	Image-guided 1H MR point resolved spectroscopic sequence spectrum of invasive carcinoma of human uterine cervix (Lee et al ,1998).	99
41	Atypical in vivo MR spectra with choline and lipid peaks highlighted. (Booth et al, 2009).	102
42	MR SPECTRA IN cervical cancer stage Ib (Wakefield et al ,2013)	104
43	Histological section and HR MAS MR standard pulse acquire Spectrum and spin echo spectrum of two cervical cancer with and without apoptosis (Lyng et al ,2007)	106
44 a-b-c	1H NMR spectra (δ5.5-0.5) of the plasma obtained from a patient with (A) CSCC, (B) CIN and (C) a healthy control (Hasim et al ,2012)	110
45 a-b	Proton magnetic resonance spectra before and after three cycle of neoadjuvant chemotherapy (de Souza et al ,2004)	111
46	Pre and post therapy spectroscopy with significant reduction in choline peak (kundu etal,2012).	112
47 a-c	A case with recurrence cervical cancer with ADC and RBV mapping (kundu etal,2012).	116
48 a-c	T2W image demonstrating tumor involving the cervix with diffusion and RBV mapping (kundu etal.2012)	116

No.	<u>Figures</u>	Pa ge
49	A case of cervical cancer in sagittal and coronal of ADC with restricted diffusion (arrow) (Wakefield etal,2013)	117
50 a-c	A case of central recurrence after radical surgery for cervical cancer and follow up after treatment with different modalities including ADC map (Moreno et al ,2012)	120
51 a-f	A case of vaginal fornix recurrence after radical surgery for cervical cancer Ac and follow up after treatment with different modalities including <i>DCE-MRI</i> (Moreno et al ,2012).	124
5B	Pap test. Clinically A speculum is inserted into the vagina to widen it (NCI ,2014)	29
5C	Micrograph of a Pap test (www.greens borogynecology.com/services/papsmear/)	29
5D	FIGO staging: Stage IA1 and IA2 cervical cancer. (NCI, 2014)	34
5E	FIGO staging: Stage IB1 and IB2 cervical cancer. (NCI, 2014)	35
5F	FIGO staging: Stage II cervical cancer. (NCI, 2014)	35
5G	FIGO staging: Stage IIIA cervical cancer. Cancer has spread to the lower third of the vagina but not to the pelvic wall. (NCI, 2014)	36
5H	FIGO staging: Stage IIIB cervical cancer. (NCI, 2014)	36
5 M- 5N	FIGO staging: Stage IVA cervical cancer and Stage IVB cervical cancer.(NCI, 2014)	37

List of Tables

No.	<u>Table</u>	<u>Page</u>
1	Revised FIGO staging of cervical carcinoma (Pecorelli, 2009).	33
<u>2</u>	Correlation between FIGO staging of uterine cervix cancer and MRI findings (Okamoto et al, 2003).	56
<u>3</u>	Comparison of major imaging techniques for studying cancer metabolism.). (Lin and Chung, 2014).	77
<u>4</u>	Commonly Studied MR-Detectable Nuclei (Glunde and Bhujwalla, 2011).	81
<u>5</u>	Comparison of peaks of MR spectroscopy in cervical carcinoma (Lee et al,1998).	100
<u>6</u>	Imaging modality of choice in respect to treatment/outcome variants (Jeong et al,2003).	134

Introduction

Aim of the Work

