

"قَالُوا سُبْحَانَكَ لَا عِلْمَ لَنَا إِلَّا مَا عَلَّمْتَنَا اللَّهُ الْحَكِيمُ" إِنَّكَ أَنْتَ الْعَلِيمُ الْحَكِيمُ"

(صدق اللة العظيم) (سورة البقرة ٣٢)

A New Pulp Capping Material Developed From Portland Cement

Thesis

Submitted in partial fulfillment for Doctor's Degree in Endodontics

By

Ahmed Maged Negm

(B.D.S) October 6 University 2007 (M.Sc) in Endodontics Cairo University 2012

> Faculty of Dentistry Ain-Shams University 2015

Supervisors

Professor Dr Ihab El Sayed Hassanein

Professor of Endodontics, Faculty of Dentistry Ain Shams University

Professor Dr Ashraf Mohamed Abdel-Rahman Abu-Seida

Professor of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Cairo University

Dr Mohamed Mokhtar Nagy

Lecturer in Endodontics, Faculty of Dentistry Ain Shams University

Acknowledgments

I would like to express my sincere gratitude and appreciation to **Prof Dr Ihab El Sayed Hassanein** Professor of Endodontics, Faculty of Dentistry, Ain Shams University, for his sincerity, unsurpassed kindness, thoughtful guidance, extraordinary decency, unlimited help, care and support.

Countless thanks to **Professor Dr Ashraf Mohamed Abdel-Rahman Abu-Seida** Professor of Surgery,
Anesthesiology and Radiology, Faculty of Veterinary Medicine,
Cairo University, for his unlimited support, valuable scientific opinions and effort.

My deep gratitude and respect to **Dr Mohamed Mokhtar Nagy** Lecturer in Endodontics, Faculty of Dentistry Ain Shams
University, for his sincere help, support and encouragement during this study.

I also would like to thank **Professor Dr Heba Farag**

Professor of Oral Pathology and Vice Dean of Faculty of Oral and Dental Medicine, Cairo University; for her great efforts and guidance during the histopathological phases of this research..

Dedication

This work is dedicated to my parents for their endless love, support and encouragement.

"Thank you very much, without you this work would not have been possible"

Contents

Introduction	1
Review of Literature	2
Aim of the study	36
Materials and methods	37
Results	64
Discussion	117
Summary and Conclusion	129
Bibliography	134

List of Tables

Table	Title	Page
Table (1)	Criteria for classification of inflammatory cell	61
	response	
Table (2)	Scoring system for dentin bridge formation	61
Table (3)	Criteria for classification of pulp calcification	63
Table (4)	Means and standard deviations (SD) of initial	64
	setting time (Min) for the different materials	
Table (5)	Means and standard deviations (SD) of	
	final setting time (Min) for the different	66
	materials	
Table (6)	Means and standard deviations (SD) of	
	compressive strength (MPa) for the different	68
	materials after 24 hrs.	
Table (7)	Means and standard deviations (SD) of	
	compressive strength (MPa) for the different	70
	materials after 21 days.	, 0
Table (8)	Means and standard deviations (SD) of	
	diametral tensile strength (MPa) for the	72
	different materials after 24 hrs.	. —
Table (9)	Means and standard deviations (SD) of	
	diametral tensile strength (MPa) for the	74
	different materials after 21 days.	
Table (10)	Means and standard deviations (SD) of the	
	push out bond strength (MPa) for the different	76

	materials.	
Table (11)	pH values and their average at different	78
	times.	
Table (12)	Differences in mean inflammatory cell	101
	count between different groups after 3	
	weeks.	
Table (13)	Differences in mean inflammatory cell	103
	count between different groups after 3	
	months	
Table (14)	The frequencies and percentages of	107
	inflammatory scores for different groups.	
Table (15)	The frequencies and percentages of dentin	110
	bridge scores for different groups.	
Table (16)	The frequencies and percentages of	115
	pulp stone scores for different groups.	

List of Figures

Figure No.	Title	Page
		no.
Figure (1)	Gilmore needle used for testing setting time.	39
Figure (2)	pH meter.	40
Figure (3)	Customized Teflon mould for formation of the specimens with the required size for compressive strength testing.	41
Figure (4)	Customized Teflon mould for formation of the samples with the required size for diametral tensile strength testing.	41
Figure (5)	Computer controlled materials testing machine (Model LRX-plus; Lloyd Instruments Ltd., Fareham, UK).	43
Figure (6)	Testing compressive strength of a vertically mounted specimen with computer controlled testing machine.	44
Figure (7)	Testing diametral tensile strength of a horizontally mounted specimen using computer controlled testing machine.	46
Figure (8)	A sample placed in a dentin disc for push out bond strength testing using computer controlled testing machine.	49
Figure (9)	A schematic diagram of the present study	51
Figure (10)	Intravenous administration of general anesthesia.	54

Figure (11)	Class V cavities with pulp exposure in a dog.	56
Figure (12)	Placement of capping material on the exposure sites.	57
Figure (13)	Placement of final restoration over the capping materials.	58
Figure (14)	Light microscope used for histologic examination.	60
Figure (15)	Image analyzer system (Leica Queen 500)	
	connected to Leica light microscopy Leica	62
	Microsystems) used for measuring dentin	02
	bridge thickness.	
Figure (16)	Bar chart showing the mean initial setting	
	time (Min) for the different materials.	65
Figure (17)	Bar chart showing the mean final setting time	
	(Min) for the different materials.	67
Figure (18)	Bar chart showing the mean compressive	
	strength (MPa) for the different materials after	69
	24 hrs.	0)
Figure (19)	Bar chart showing the mean compressive	
	strength (MPa) for the different materials after	71
	21 days.	/ 1
Figure (20)	Bar chart showing the mean diametral tensile	
	strength (MPa) for the different materials after	73
	24 hrs.	13
Figure (21)	Bar chart showing the mean diametral tensile	
	strength (MPa) for the different materials after	75
	21 days.	13
Figure (22)	Bar chart showing the mean push out bond	
	strength (MPa) for the different materials.	

		77
Figure (23)	Diagrammatic representation of pH values for	
	the different materials.	78
Figure (24)	Histogram showing the pH values of different	
	materials at different times.	79
Figure (25)	Photomicrograph showing normal pulp. (H&E	80
	X100)	
Figure (26)	Photomicrograph of MTA after 3weeks showing vasodilatation and a big area of necrosis with no dentin bridge formation. (H&E X40).	82
Figure (27)	Photomicrograph of MTA after 3weeks showing vasodilatation and continuous odontoblastic layer. (H&E X100).	82
Figure (28)	Photomicrograph of MTA 3weeks showing	
	pulp with vasodilatation, and areas of	83
	necrosis. (H&E X200)	05
Figure (29)	Photomicrograph of MTA after 3months	
	showing complete dentin bridge formation	83
	with normal pulp. (H&E X 100).	
Figure (30)	Photomicrograph of MTA after 3 months	
	showing complete dentin bridge formation	84
	with normal pulp. (H&E x 100).	0.
Figure (31)	Photomicrograph of MTA after 3 months	
<i>G.</i> - ()	showing normal pulp with continuous	0.4
	odontoblastic layer. (H&E x 100).	84
Figure (32)	Photomicrograph of MTA after 3 months	

	showing dilated blood vessels and mild	85
	inflammation. (H&E x 200).	
Figure (33)	Photomicrograph of PortCal I after 3 weeks	
	showing the exposure site without dentin	87
	bridge formation. (H&E X100).	07
Figure (34)	Photomicrograph of PortCal I after 3 weeks	
	showing the exposure site without dentin	87
	bridge formation and normal pulp. (H&E	07
	X100).	
Figure (35)	Photomicrograph of PortCal I after 3 weeks	
	showing vasodilatation and areas of necrosis.	88
	(H&E X100).	00
Figure (36)	Photomicrograph of PortCal I after 3 weeks	
	showing continuous odontoblastic layer.	88
	(H&E X100).	00
Figure (37)	Photomicrograph of Portcal I after 3 months	
	showing the exposure site with partial dentin	89
	bridge formation. (H&E X100).	0)
Figure (38)	Photomicrograph of PortCal I after 3 months	
	showing the exposure site with partial dentin	89
	bridge formation. (H&E X100).	0)
Figure (39)	Photomicrograph of PortCal I after 3 months	
	showing inflamed pulp under complete dentin	90
	bridge. (H&E X100).	70
Figure (40)	Photomicrograph of PortCal I after 3 months	
	showing normal pulp under complete dentin	90
	bridge. (H&E X100).	70
Figure (41)	Photomicrograph of PortCal I after 3 months	91

	showing normal pulp. (H&E X100).	
Figure (42)	Photomicrograph of PortCal I after 3 months	
	showing vasodilatation and areas of necrosis.	91
	(H&E X100).	71
Figure (43)	Photomicrograph of Portland cement with	
	bismuth oxide after 3 weeks showing no	93
	dentin bridge formation. (H&E X100).	75
Figure (44)	Photomicrograph of Portland cement with	
	bismuth oxide after 3 weeks showing	93
	vasodilatation and continuous odontoblastic	93
	layer. (H&E X100).	
Figure (45)	Photomicrograph of Portland cement with	
	bismuth oxide after 3 weeks showing	94
	vasodilatation and necrosis. (H&E X100).	74
Figure (46)	Photomicrograph of Portland cement with	
	bismuth oxide after 3 weeks showing severe	94
	inflammation. (H&E X100).	74
Figure (47)	Photomicrograph of Portland cement with	
	bismuth oxide after 3 months showing a failed	95
	attempt to form dentin bridge over a necrotic	73
	pulp. (H&E X100).	
Figure (48)	Photomicrograph of Portland cement with	95
	bismuth oxide after 3 months showing the	
	exposure site with partial dentin bridge	
	formation. (H&E X100).	
Figure (49)	Photomicrograph of Portland cement with	
	bismuth oxide after 3 months showing the	96
	exposure site with complete dentin bridge	70

	formation over necrotic pulp. (H&E X100).	
Figure (50)	Photomicrograph of Portland cement with	
	bismuth oxide after 3 months showing almost	96
	normal pulp. (H&E X100).	70
Figure (51)	Plate of photomicrographs of Portland	
	cement with bismuth oxide after 3 months	97
	showing vasodilatation. (H&E X100).	71
Figure (52)	Plate of photomicrographs of Portland	
	cement with bismuth oxide after 3 months	97
	showing vasodilatation with fibrosis. (H&E	71
	X100).	
Figure (53)	Photomicrograph of Portland cement with	
	bismuth oxide after 3 months showing pulp	98
	with pulp stone. (H&E X100).	70
Figure (54)	Photomicrograph of Portland cement with	
	bismuth oxide after 3 months showing pulp	98
	with large detached pulp stone. (H&E X100).	70
Figure (55)	Photomicrograph of Portland cement with	
	bismuth oxide after 3 months showing fatty	99
	degeneration. (H&E X100).	
Figure (56)	Photomicrograph of Portland cement with	99
	bismuth oxide after 3 months showing pulp	
	inflammation and necrosis. (H&E X100).	
Figure (57)	Graph I: Floating error bar represents mean	102
	inflammatory cell count between different	
	groups after 3 weeks.	
Figure (58)	Graph II: Floating error bar represents mean	104
	inflammatory cell count between different	