Thermoplastic versus Conventional Heat Cured Denture Bases for Implant - Retained Mandibular Overdenture

Thesis outline Submitted to

The Faculty of Dentistry Ain Shams University

for the partial fulfillment of Doctorate Degree in Prosthodontics

By **Hany Mohammed Mohammed Ali**

B. D. S. (Ain Shams University 2002)M. Sc (Cairo University 2010)

Under Supervision of

Dr. Hany Ibrahim Eid

Professor of Prosthodontics
Faculty of Dentistry-Ain Shams University

Dr. Noha Helmy Nawar

Associate Professor of Prosthodontics Faculty of Dentistry-Ain Shams University

Faculty of Dentistry
Ain Shams University
2017

List of Contents

Title	Page
❖ List of figures	i
❖ List of tables	V
❖ Introduction	1
* Review of literature	3
■ Incidence and prevalence of edentulism	3
- Factors affecting degree of ridge resorption	4
- Effects of residual ridge resorption	10
■ Treatment of complete edentulism	13
- Conventional complete dentures	13
- Factors affecting success of conventional complete	
denture	14
- Surgical management of severely resorped ridge	16
- Overdentures	19
. Classification of overdentures	19
. Tooth supported overdenture	19
. Advantages of tooth supported overdentures	20
. Disadvantages of tooth supported overdentures	21
. Implant Supported Overdenture	21

- Dental Implant	21
. Classification of dental implant	22
. Bone behavior in relation to implants	24
. Osseointegration	26
. Dental implant stability	27
. Factors affecting the implant stability	27
- Implant overdenture attachments	30
. Implant overdenture attachments classification	31
. Classification of implant overdentures	36
. Advantages of implant overdentures	37
. Disadvantages of implant overdentures	38
Complete denture base materials	40
- The requirements of a denture base material	40
- Types of complete denture materials	41
. Poly methyl Methacrylate	41
Advantages of polymethyl methacrylate	42
Disadvantages of polymethyl methacrylate	42
. Thermoplastic resin	43
Types of thermoplastic resin	43
Advantages of thermoplastic materials	47

Disadvantages of thermoplastic materials	
- Physical properties of thermoplastic versus polymethyl	
methacrylate denture base material	52
■ Methods of evaluation	54
- Radiographic evaluation	54
- Marginal bone height	54
. Periapical radiography	54
. Panoramic radiography	55
. Scanography	56
. Computed tomographic scans (CT)	57
. Cone Beam Computed Tomography (CBCT)	57
- Implant stability	59
	59
. Influencing factors affecting the Implant Stability	
Quotient (ISQ)	62
❖ Aim of study	64
❖ Material and methods	65
■ Patient selection	65
■ Patient approval and consent.	
■ Patients Evaluation	67

■ Patients grouping	70
■ Pre-surgical considerations.	71
■ Surgical armamentaria.	73
■ Surgical procedures	74
- First surgical phase (fixture installation)	74
- Second surgical phase	81
Prosthetic procedures	83
- Laboratory steps for the denture construction	87
Post insertion care and instructions	94
■ Methods of evaluation	97
- Radiographic Evaluation	97
. Image analysis	98
- Implant stability	99
Statistical analysis	101
* Results	102
■ Radiographic evaluations	
- The effect of different denture base materials on bone	
loss	102
- The effect of time on the amount of bone loss throughout the study period within the same group	109

■ Implant stability	113
- The effect of different denture base materials on implant stability	113
- The effect of time on the stability of implants	
throughout the study period	115
❖ Discussion	
■ Discussion of methodology	117
■ Discussion of results	123
❖ Summary and conclusion	
❖ References	130
❖ Arabic summary	

List of Figures

Fig.	Description	Page
1	completely edentulous maxillary and mandibular arches	69
2	Cone Beam CT	70
3	Surgical template	71
4	Dental implants in sterile double vial package	72
5	Electric high torque motor with irrigation system	73
6	full surgical kit for implant installation	73
7	Sequence of drills used for implant installation	74
8	Surgical incision	77
9	Full thickness mucoperiostial flap	77
10	Mark fixture site with round surgical bur	77
11	Pilot drill	78
12	Enlargement of implant bed with parallel drill	78
13	Reaming the implant bed	78
14	Fixture mount were removed from its sterile package	79
15	Implant handled to its position and slowly threaded into the bone	79
16	Implant installed with its transferred mounts	79
17	Unscrewing the implant mount with screw driver	80
18	The fixture with its cover screw in position	80
19	Interrupted suture	80

20	Detection of implant fixture	82
21	Snap (ball) attachment	82
22	Attachment insertion to fixture	82
23	Snap (ball) attachment in its position	83
24	Alginate primary impressions	85
25	Special tray	85
26	Implant analogue	85
27	Abutment analogues were replaced in their accurate positions in the	86
	impression	
28	Abutment analogues position in master cast	86
29	Silicone ring around the female part	86
30	Holes in selected teeth	89
31	Waxing up and attaching the sprue formers	89
32	Mold after dewaxing	89
33	Sabilex Acrilfast cartilage	90
34	Sabilex 2AD plus	90
35	The denture attaching the sprue formers after injection	91
36	Processed denture with sprue	91
37	Finished thermoplastic denture	91
38	The plastic sleeves	95
39	Gap around the socket	95
40	Activator and deactivator instruments	96

41	Closing or opening the ball socket	96
42	Marginal bone heights evaluation report	98
43	Osstel ISQ	99
44	Smartpeg with its holder	100
45	Smartpeg with its holder in patient mouth	100
46	Smartpeg placed into internal interface of implant To record ISQ value	101
47	The mean values for the amount of bone loss at mesial aspect of implants	104
48	The mean values for the amount of bone loss at distal aspect of implants	106
49	The mean values for the amount of bone loss at all aspects of implants	108
50	The mean values for the amount of bone loss within group I by Paired t test	110
51	The mean values for the amount of bone loss within group II by Paired t test	112
52	The mean values for implant stability records by t test	114
53	The mean values for implant stability records in group I by Paired t test	115
54	The mean values for implant stability records in group II by Paired t test	116

List of Tables

Table	description	Page
1	T test comparing the mean values for the amount of bone loss at	103
	mesial aspect of implants	
2	T test comparing the mean values for the amount of bone loss at	105
	distal aspect of implants	
3	T test comparing the mean values for the amount of bone loss at	107
	all aspects of implants	
4	Paired t test comparing the mean values for the amount of bone	109
	loss within group I	
5	Paired t test comparing the mean values for the amount of bone	111
	loss within group II	
6	T test comparing the mean values for implant stability records	113
7	Paired t test comparing the mean values for implant stability	115
	records in group I	
8	Paired t test comparing the mean values for implant stability	116
	records in group II	

INTRODUCTION

Loss of natural dentition, eventual edentulism and resultant wearing of complete denture has been part of the expected course of aging. The prevalence of edentulism has decreased in the past few years due to the improvement of conservative dental treatment modalities as well as the greater frequency of their use. However, the expansion of the elderly population results in an increase in the need of various forms of oral health care.

Years of wearing complete denture lead to progressive bone resorption. This destructive process leads to loss of denture support, improper retention of mandibular denture, intolerance to loading by mucosa, difficulties with eating and speech, pain and altered facial appearance.

The introduction of osseointegrated implants in dentistry has provided new alternative options for the rehabilitation of edentulous patients. A conventional complete mandibular denture is less appropriate than a maxillary denture in term of retention. However, the use of two implants to retain the denture significantly improves the prognosis of mandibular edentulism.

The concept of overdentures has many advantages including preservation of alveolar bone and protects the patient from the psychological trauma of finding himself edentulous. Moreover, they enhance support, stability and retention. Attachments are one method to improve retention. They may connect either individual implants or

splinted implants to the overdenture. During masticatory function, overstress around dental implants may lead to bone resorption, which lead to peri-implant infection and failure of dental rehabilitation. The way in which bone is loaded can affect its response. In case of repetitive cyclic stresses application; microcracks in bone may occur and may lead to osteoclastic activity.

In recent years, thermoplastic polymers has been attracting attention as a denture base material due of its advantageous proberties such as better elasticity and higher moulding precision than heat-cured base resins that decreases the stresses on ridge bone, abutment teeth or implant as well as facilitate denture retention by way of utilizing the available undercuts according to the denture base design.

Though the question is whether the thermoplastic polymers is better than other denture base materials regarding for the stress distribution and alveolar bone resorption or not

REVIEW OF LITERATURE

Incidence and prevalence of edentulism

Edentulism is loss of all permanent teeth. This is a result of a complicated interaction between biological process (as caries and periodontal disease) and non-biological entities (e.g. economy, dental awareness, access to dental services, and education). (1)

Edentulism has several bad consequences on oral health with residual ridge resorption that leading to impaired masticatory and speaking function, nutritional deficiency status that increase the risk for systemic diseases, Appearance and social problems. (2)

10% of the adult population suffers of total edentulism over forty years with gradual increases to reach 45% in population over 75 years. (3)

Complete edentulism is considered a serious pathological condition of the maxillofacial system that affects its basic functions (mastication, phonation, physiognomy, etc.). Out of these considerations, the prosthetic treatment of complete edentulism is considered to be the most complicated situation, because the treatment requires restoring basic features of the stomatognathic system such as occlusal vertical dimension (OVD), occlusal plane, and lost intermaxillary relations and on the same side achieving retention and stability of prostheses. (4)

Optimal complete denture treatment requires the understanding, differentiation and integration of certain mechanical, biological and physical factors that determine the properties of retention, stability and support in complete dentures. (5)

Factors affecting degree of ridge resorption:

The residual ridge resorption in edentulous patients is considered a serious clinical issue. Progressive bone loss without proper prosthetic treatment and rehabilitation of the masticatory function can contribute to numerous unfavorable sequelae. ⁽⁶⁾

Total teeth loss results in impairment of mastication as well as loss of receptors of the periodontal tissue. Thus the efficiency of mastication is markedly decreased with subsequent deterioration in general condition and increased risk of systemic and neoplastic diseases. (7)

There are many individual features that determine speed and extent of resorption such as age, sex and time elapsed since tooth extraction, osteoblast life span, local and systemic biochemical factors and physical factors, such as the pressure exerted on the bone by dentures. (8)

Knowledge of the causative factors that affect alveolar resorption in the mandible is important to avoid the potentially severe consequences of residual ridge resorption in edentulous patients. (9)

1. Anatomic factors:

A. Bone size

The resorption is influenced by the original size of the ridge and the depth of the extraction sockets. (9)

It is reported that ridge resorption differs with both the quantity and quality of bone of the residual ridges. The more the amount of bone, the more resorption will be present however, the amount of bone is not a good detector of the resorption rate because sometimes large ridges resorb rapidly and some knife-edge ridges may remain with little change for long periods of time. (10)

Evaluating the present status of the residual ridge gives clear evidence about the resorption pattern. The residual ridges which are high and well-rounded for several years will continue to do so. If it has resorbed in short time, it will resorb at a higher rate. (11)

B. Bone type

It has been postulated that cortical and cancellous bones respond differently to either local or systemic influences. In humans, the number, distribution, and arrangement of trabeculae varies highly in edentulous maxillas and mandibles. (12)

The thin cortical bone and the relatively large amount of trabecular bone in the maxilla are proposed to absorb bite impulses more efficiently than does mandibular bone. (11)

C. Bone density

The density of the ridge is another important (considerable) factor. However the density does not signify the current metabolic