

Petrophysical Evaluation of Pliocene Reservoirs at West Nile Delta, Egypt

THESIS

Submitted for the Master Degree of Science as a partial fulfillment for the requirements of the Master of Science

Geophysics Department
Faculty of Science
Ain Shams University

By

Marwa Mahmoud Tawfik Taha

B.SC. in Geophysics

Supervised by

Prof. Dr. Said Abd El-Maaboud Aly

Professor of Well Logging and Formation Evaluation, Faculty of Science, Ain Shams University

Dr. Abdullah Mahmoud El-Sayed

A. Prof. of Geophysics Faculty of Science Ain Shams University

Cairo-2016

Note

The present thesis submitted to the Faculty of Science, Ain Shams University in partial fulfillment for the requirements of the degree of Master of Science in Geophysics.

Beside the research work materialized in this thesis, the candidate has attended ten post-graduate courses for one year in the following topics:

- 1. Reservoir evaluation
- 2. Fluid dynamics
- 3. Advanced well logging
- 4. Physical properties of Rocks
- 5. Basin analysis
- 6. Formation evaluation
- 7. Subsurface geology
- 8. Geophysical exploration
- 9. Geophysical field measurements
- 10. Numerical analysis and computer programming

She successfully passed the final examinations in these courses.

In fulfillment of the language requirement of the degree, she also passed the final examination of a course in the English language.

Prof. Dr.Salah El Dein Abd Elwahab

Chairman of Geophysics Department

ACKNOWLEDGMENTS

First of all, I would like to thank **Allah Almighty** who gives us the power and ability to do the things.

The realization of this master thesis was an intense and timeconsuming process that would not have been possible without the help and support of many people.

I wish to express my gratitude and deep appreciation to **Prof. Dr.Said Abd Elmaaboud Aly**, Professor of Applied Geophysics Faculty of Science, Ain Shams University for supervision, encouragement, kind help, valuable advice interpretation and the keen revision of the manuscript.

I am grateful to **Dr. Abdulla Mahmoud**, Professor of Exploration Geophysics, Faculty of Science, Ain Shams University for his supervision, continues helpful, and for fruitful discussion and being a great teacher.

I also extend my appreciation to **Dr. Waleed Afify**, Geol.

Department head at Khalda Petroleum Company for continuous help and discussion.

Acknowledgments are also due to authorities of **EGPC**, as well as North Alamein Petroleum Company for supplying exploratory data used in this work. I also, grateful to who assisted me to make this work to become true.

DEDICATION

This work is dedicated

To Allah and I hope to accept it from me

To my parents

To my brother

To my husband

To my son Yasseen

ABSTRACT

The offshore Nile Delta basin is considered as one of the most promising province in Egypt which has an excellent potential gas and condensate reserves for future exploration, West Med Block 1 lies offshore on the western side of the Nile Delta. It is between 20 and 100 km from the coast and the city of Alexandria and lies in water depths from 250 m (800 ft) in the southeast to over 1200 m (3800 ft) in the northwest.

The aim of this study is directed to evaluate the Kafr Elsheikh reservoir Formation using pretrophysical analysis through determine the different reservoir parameters characterizing the pay zone from well log data to spot light on the promising locations for other further exploration. In addition develop litho-saturation cross plots and the lithologic identification cross plots, introducing the lateral variation of the lithology and the different saturation distribution in the reservoir rock. The available data include logging data of seven representative wells, for the purpose of evaluation the of Kafr Elshikh reservoir.

Petrophysical data are illustrated on Iso-parametric maps (total thickness, total porosity, effective porosity, water saturation, shale volume, net sand, net growth sand, net pay and hydrocarbon saturation, residual hydrocarbon saturation and movable hydrocarbon saturation) to indicate the lateral variation, good places for new productive wells, and to represent the reservoir thickness. Moreover deducing some of the factors responsible for the drying or absence of gas productivity of all wells drilled in the study area, and introduces some recommendations related to these conditions of reservoirs.

From the results, it can be stated that the study area may be considered containing hydrocarbon accumulation in different locations, and

there is a good opportunity to drill other development wells to enhance the productivity from the area of study.

TABLE OF CONTENTS

Subject	Page
ACKNOWLEDGEMENTS	i
DEDICATION	ii
ABSTRACT	iii
TABLE OF CONTENTS	v
LIST OF FIGURES	ix
LIST OF TABLES.	xi
LIST OF APPRECIATION	xii
Chapter 1: INTRODUCTION	1
Chapter 2: GEOLOGIC SETTING	6
A) General geologic setting	6
B) Geological Evaluation	12
1) Stratigraphic Framework	12
a- Early Miocene	13
b- Late Miocene	13
c- Late Miocene – Early pliocene	14
d- The Pliocene - Early Pleistocene	15
e- The Late Pliocene to Early Pleistocene	15
f- Pleistocene – Holocene	15
i. Mit Ghamr Formation	15
ii. The Bilqas Formation	16
C) Structural Setting Nile Delta	18
D) Petroleum Systems	19
Chapter 3: Petrophysical Evaluation Procedures	21
A) Data set available for well log analysis	22

Subject	Page
1) Gamma ray log	22
2) Caliper log	22
3) Spontaneous potential log (sp)	22
4) Resistivity logs	23
a- Normal device	23
b- Laterolog	23
c- Induction log	23
5) Microspherically Focused Log (MSFL)	24
6) Porosity logs	24
a- Density log	24
b- Sonic log	28
d- Neutron log	25
A) Procedures of reservoir evaluation	26
1) Data gathering	27
2) Data base editing tasks	27
3) Formation evaluation tasks	28
a- Determination of Formation Temperature (FT)	29
b- Determination of Fluid Resistivity.	29
i. Determination of formation water resistivity (Rw)	30
ii. Correction of mud cake and mud filtrate resistivity's (Rmc	
Rmf)	30
c- Determination of rock resistivities (Rxo and RT)	31
i. The Flushed zone resistivities (Rxo)	31
ii. Uninvaded zone resistivity (RT)	31
d- Determination of the formation resistivity factor (F)	32

	Subject	Page
e-	Porosity Determination.	33
i.	Porosity determination from density log	33
ii.	Porosity determination from neutron log	35
iii.	Porosity determination from sonic log	36
iv.	Determination of various types of porosity	38
f- Sa	nturation Determination	40
i.	Estimation of water saturation (Sw)	43
ii.	Hydrocarbon saturation determination (Sh)	46
Chapt	ter 4: FORMATION EVALUATION	48
A) Sh	ale Analysis	48
1)	Definition of Shale types	49
a-	Laminated Shale	49
b-	Structural Shale	50
C-	Dispersed shale	50
2)	Methods of shale determination	51
a-	Gamma ray method.	52
b-	Neutron method.	53
C-	Resistivity method.	53
3)	Estimation of shale Parameters	54
a-	Gamma ray vs. M plot	55
b-	Gamma ray vs. neutron plot	56
C-	Gamma ray vs. density plot	56
	Gamma ray vs. sonic plot	56
e-	Gamma ray vs. Resistivity plot	56

Subject	Page
4) Application on the study area	65
B) Lithological and Mineralogical Identification	73
1) Neutron-density cross plot	73
2) M-N Cross plot	80
3) Clay Minerals Identification by using Natural Gamma Ray Spectrometry Tool (NGS)	87
a- Th-K cross plot of Dekhila -1X Well	88
b- PE-K Crossplot of Dekhila -1X Well	88
c- PE-Th/K cross plot of Dekhila -1X well	88
d- Th-K cross plot of Abu Sir-3X Well	88
e- PE-K Crossplot of Abu Sir-3X Well	89
f- PE-Th/K cross plot of Abu Sir -3X Well	89
C) Vertical Distribution of Petrophysical and Lithological Results	93
D) Formation mapping	103
Chapter 5: Summary and Conclusions	110
References	116

LIST OF FIGURES

NO	Figure	Page
1-1	Location map of the study area showing the location of	
	drilled wells in West Med Block 1 lies on the western side of the Deepwater Nile Delta, Egypt.	3
2-1	Generalized litho-stratigraphic column of Nile Delta with	
2.2	inferred old Tertiary and Pre Tertiary sequences	17
2-2	Sketch Map Showing the General Structural Framework of the Nile Delta Basin	18
4-1	Effects of clay distribution on porosity	51
4-2	Frequency crossplot of the Kafr Elshikh, Al Bahig-1x	58
4-3	Frequency crossplot of the Kafr Elshikh, El King-1X	59
4-4	Frequency crossplot of the Kafr Elshikh, El Max-1X	60
4-5	Frequency crossplot of the Kafr Elshikh, Dekhila-1X	61
4-6	Frequency crossplot of the Kafr Elshikh, Abu Sir-1X	62
4-7	Frequency crossplot of the Kafr Elshikh, Abu Sir-2X	63
7-8	Frequency crossplot of the Kafr Elshikh, Abu Sir-3X	64
4-9	Clay indicators of Kafr Elshikh formation in Al Bahig-1X.	66
4-10	Clay indicators of Kafr Elshikh formation in El King-1X	67
4-11	Clay indicators of Kafr Elshikh formation in El Max-1X	68
4-12	Clay indicators of Kafr Elshikh formation in Dekhila-1X	69
4-13	Clay indicators of Kafr Elshikh formation in Abu Sir-1X	70
4-14	Clay indicators of Kafr Elshikh formation in Abu Sir-2X	71
4-15	Clay indicators of Kafr Elshikh formation in Abu Sir-3X	72
4-16	Density neutron crossplot of of the Kafr Elsheikh Reservoir, in Al Bahig -1x Well	75
4-17	Density neutron cross plot of the Kafr Elsheikh Reservoir, in El King -1x Well.	76
4-18	Density neutron cross plot of the Kafr Elsheikh Reservoir, in El Max-1xWell.	76

NO	Figure	Page
4-19	Density neutron cross plot of the Kafr Elsheikh Reservoir,	
4.20	in Dekhila -1x Well	78
4-20	Density neutron cross plot of the Kafr Elsheikh Reservoir, in Abu Sir -1x Well.	78
4-21	Density neutron cross plot of the Kafr Elsheikh Reservoir,	70
. 21	in Abu Sir -2x Well.	79
4-22	Density neutron cross plot of the Kafr Elsheikh Reservoir,	
	in Abu Sir 3x Well	79
4-23	M-N cross plot of the the Kafr Elsheikh Reservoir, in Al	
4.04	Bahig-1x Well	82
4-24	M-N cross plot of the the Kafr Elsheikh Reservoir, in El	82
4-25	King -1x Well	82
- -23	Max-1x Well	84
4-26	M-N cross plot of the the Kafr Elsheikh Reservoir, in	0.
	Dekhila -1x Well	85
4-27	M-N cross plot of the the Kafr Elsheikh Reservoir, in Abu	
4.20	Sir-1X Well	85
4-28	M-N cross plot of the the Kafr Elsheikh Reservoir, in Abu	96
4-29	Sir-2X Well	86
T -27	Sir-3X Well	86
4-30	Th-K cross plot for clay intervals in Dekhila -1x	
	Well	89
4-31	PE- K cross plot for clay intervals in Dekhila -1x Well	90
4-32	PE-Th/K cross plot for clay intervals in Dekhila -1x	70
	Well	90
4-33	Th-K cross plot for clay intervals in Abu Sir-3x Well	91
4-34	PE- K cross plot for clay intervals in Abu Sir-3x Well	91
4-35	PE-Th/K cross plot for clay intervals in Abu Sir-3x Well	92
4-36	Litho-Saturation Cross Plot for Kafr Elshikh sand in Al	72
	Bahig-1x well	96
4-37	Litho-Saturation Cross Plot for Kafr Elshikh sand in El	
	King-1x well	97
4-38	Litho-Saturation Cross Plot for Kafr Elshikh sand in El	00
	Max-1x well.	98

NO	Figure	Page
4-39	Litho-Saturation Cross Plot for Kafr Elshikh sand in	99
	Dekhila-1x wellLitho-Saturation Cross Plot for Kafr Elshikh sand in Abu	
4-40	Sir-1x well	100
4 41	Litho-Saturation Cross Plot for Kafr Elshikh sand in Abu	101
4-41	Sir-2x well	101
4-42	Litho-Saturation Cross Plot for Kafr Elshikh sand in Abu	102
	Sir-3x well	
4-43	Hydrocarbon Saturation Map of Kafr Elshikh reservoir	106
4-44	Effective porosity map of Kafr Elshikh reservoir	106
4-45	Total porosity map of Kafr Elshikh reservoir	107
4-46	Water saturation of Kafr Elshikh reservoir	107
4-47	Shale Volume Map of Kafr Elshikh reservoir	108
4-48	Net sand map of of Kafr Elshikh reservoir	108
4-49	Net Pay Map of Kafr Elshikh reservoir	109
4.50	Residual Hydrocarbon Saturation Map of Kafr Elshikh	
4-50	reservoir	109
4.51	Movable hydrocarbon saturation map of Kafr Elshikh	
4-51	reservoir	110

LIST OF TABLES

NO	Table	Page
3-1	The Direct and Indirect measurement of well log tools	26
4-1	The selected shale parameters for kafr Elsheikh formation trough the wells in the study area	55
4-2	Well Log parameters of Kafr Elshikh reservoirs	103

LIST OF ABBREVIATIONS

Word	Abbreviations
Feet.	ft
resistivity of flushed zone	Rxo
Microspherically Focused Log.	MSFL
Deep resistivity	RLLD
Water resistivity	Rw
Surface temperature	ST
Total depth	TD
Bottom hole temperature	ВНТ
Formation depth	FD
Flushed zone resistivity	Rxo
Uninvaded zone resistivity	RT
Thickness of mud cake	hmc
Formation resistivity factor	F
Porosity derived from a measurement of formation density	ΦD
Matrix density	ρma
Density log reading.	ρblog
Fluid density	ρbf
Density of shale bed.	ρbsh
Gamma ray log for clean formation	GRcl
Gamma ray log for shale	GRsh
Mediterranean	med

Chapter one Introduction

Chapter One

INTRODUCTION

The West Delta deep marine concession lies 20–100 km offshore in the deep water of the present-day Nile Delta, covering 6150 km² of the northwestern margin of the Nile cone. Recent exploration activity has focused on the Pliocene, with 13 consecutive exploration and appraisal wells successfully drilled on nine separate fields since BG Group and partner Edison Gas acquired the concession in 1995. Burullus Gas, a subsidiary of Rashpetco currently operates the concession on behalf of the Egyptian General Petroleum Gas corporation, BG Group, and Edison Gas.

The Nile Delta, Mediterranean, drilling provinces occur within a petroleum system dominated by play trends involving Pliocene turbidities fans and channels, deformation of Pliocene deltaic sandstone, Messinian valley fills, and older Miocene turbidity deposits. Most current activity is located in the offshore Mediterranean.

The Nile Delta consists of a thick, northerly prograding clastic wedge of dominantly Neogene age. Throughout the Neogene, a Deepwater slope and/or basin floor environment was prevalent over West Med Block 1 with sediment dispersal from the Rosetta arm of the Nile Delta intermittently adding coarse sediment to an otherwise fines-dominated slope and basin floor system in the form of sheet turbidities and slope channel-levee complexes.

Shallow marine sandstones were deposited prior to a set of thin anhydrite beds. Sedimentation then rapidly returned to the deep marine setting. An earlier similar sea level fall and high salinity event may have occurred during the Serrivalian/Burdigalian.

1