Evaluation of the serodiagnostic potential of tegumental antigens in human fascioliasis

Thesis submitted for partial fulfillment of Master degree in Parasitology

By **Ghada Hussein Mohammed**

M.B.B.Ch.

Demonstrator of Parasitology Faculty of Medicine - Ain Shams University

Under Supervision of

Prof. Dr. Iman Moawad Abdelsalam

Professor of Parasitology Faculty of Medicine-Ain Shams University

Dr. Rania Mohammad Sarhan

Assistant professor of Parasitology Faculty of Medicine - Ain Shams University

Dr. Abeer Fathy Badawy

Assistant professor of Parasitology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2016-2017

Evaluation of the serodiagnostic potential of tegumental antigens in human fascioliasis

By: Ghada Hussein Mohammed

Demonstrator of Parasitology, Faculty of Medicine - Ain Shams University.

Abstract:

Background: Fascioliasis was recognized as a serious public health problem in human with an estimated 17 million people infected worldwide. Enzyme Linked Immunosorbent Assay (ELISA) is considered the most sensitive and specific as an adjuvant to faecal analysis. Specificity of ELISA depended mainly on the degree of specificity and purity of the used antigen as well as history of the tested sera. Most of the immunodiagnostic assays of human fascioliasis rely on antibody detection using crude worm antigens of which the Somatic (S) and Excretory-secretory (E-S) ones constitute a major component. Also Tegumental proteins are an important source of immunodiagnostic antigens. Several F. gigantica antigens have been purified to enhance the specificity of the diagnostic assays from which F. gigantica T Ag from which the 16.5 KDa subunit was highlighted for further investigation. The different immunodiagnostic response between the different antigens and their fractions was an urge for us to study some of their responses comparatively in a simple, ELISA technique.

Objective: The present study aims to comparatively evaluate the diagnostic performance of T Ag and its 16.5 KDa subunit prepared from *F. gigantica* adult fluke to S and E-S Ags, in a standard total indirect IgG home-made conventional ELISA for serological evaluation of human fascioliasis.

Study design: For serving this study, *F. gigantica* worms were collected from bile ducts of naturally infected cattle from a local abattoir at Cairo, Egypt, then Ags were prepared; S, E-S, T Ag and 16.5 KDa tegumental subunit (by fractionation of tegumental antigen through SDS-PAGE then elution from the gel). These Ags were introduced to an indirect TIgG ELISA. Three groups of patients were involved, Group I (15 fascioliasis patients), Group II (patients with other parasitic infections and negative for fascioliasis (8 cases of hydatidosis, 7 cases of intestinal schistosomiasis, 3 cases of amoebiasis and 2 cases of toxoplasmosis) and Group III (normal control group), it included 15 healthy individuals, confirmed to be negative for fascioliasis and the above mentioned parasitic diseases, then the results were statistically evaluated.

Results: in TIgG-ELISA, the highest sensitivity calculated from ROC test was obtained by the T Ag (100%) followed by S Ag (86.6%) followed by E-S (73.3%) and least value was obtained

from 16.5 KDa subunit (53.3%). As for the specificity, the highest value was obtained from T Ag (100%) followed by E-S Ag (79.2%) then the 16.5 KDa subunit (75%), and least value was obtained from S Ag (70.8%). The highest AUC value (1.0) was that of T Ag which was used as a reference value for the rest of the results. There was a significant outcome between the AUC values of T Ag compared to S and E-S Ags. While a highly significant outcome was found when compared to the 16.5 KDa T subunit. The dot diagram revealed that T Ag has the highest sensitivity and specificity.

Conclusions: The study highlighted the potential of *F. gigantica* T Ag over S, E-S and the 16.5 KDa T subunit in diagnosis of human fascioliasis, it seems to remain the most promising antigen as regards: sensitivity, specificity and diagnostic accuracy in conventional TIgG ELISA. This performance was followed by S and E-S Ags which showed nearly equivocal results. Unexpectedly, there was a poor diagnostic outcome from our selected 16.5 KDa T subunit.

Keywords: Fascioliasis, *F.gigantica*, ELISA, Tegumental anti gen, 16.5 KDa subunit, Somatic antigen, Excretory-secretory antigen.

First, thanks are all due to Allah for Blessing this work until it has reached its end, as a part of his generous help throughout our life.

My profound thanks and deep appreciation to Prof. Dr. Iman Moawad Abdelsalam, Professor of Parasitology, Faculty of Medicine, Ain Shams University for her great support and advice, his valuable remarks that gave me the confidence and encouragement to fulfill this work.

I would like also to express my deep gratitude to Dr. Rania Mohammad Sarhan, Assistant Professor of Parasitology, Faculty of Medicine, Ain Shams University for her generous help, guidance and patience through all stages of this work.

I wish to thank **Dr. Abeer Fathy Badawy**, Assistant Professor of Parasitology, Faculty of Medicine, Ain Shams University, for her continuous encouragement.

I am extremely sincere to my family who stood beside me throughout this work giving me their support.

Ghada Hussien Mohammed

Contents

	Page
Acknowledgment	i
List of abbreviations	iv
List of figures	vi
List of tables	viii
Introduction	1
Review of Literature	6
Historical Review	6
Taxonomic Classification	7
Fasciola species	7
Morphology	8
Life cycle	9
Epidemiology and geographical distribution	10
Pathogenesis	12
Clinical picture	13
Prognosis and Complications	15
Imunopathogenesis	17
Diagnosis	20
Treatment	24
Medical treatment	24
Surgical treatment	26
Prevention and control	26
Fasciola antigens	28
Somatic (S) antigens	29
Excretory-Secretory antigens (E-S)	31
Tegumental antigens	33
Purified antigens	33
Recombinant antigens	42
Applications of different types of ELISA in diagnosis of human fascioliasis	45
Aim of the work	49

Materials and Methods	51
I Collection of worms and Preparation of	51
Antigens	- 1
A.Collection of worms	51
B.Preparation of Antigens	52
a. Somatic (S) Ag	52
b. Excretory-secretory (E-S) Ag	54
c.Tegumental antigen (T Ag)	56
d.16.5 KDa tegumental subunit	59
i. Separation of TAg by Sodium Dodecyl	60
Sulphate-Polyacrylamide Gel	
Electrophoresis (SDS-PAGE)	78
ii. Elution of the purified FgT Ag subunit	70
(16.5KDa) from the SDS-PAGE gel by	
ultrafiltration using Pall Nanosep	
Microcentrifugal Device (0.45 μ) (Pall	
Life Sciences - USA)	83
II Conventional home made Indirect TIgG	03
Enzyme linked immunosorbent assay	
(ELISA)	83
A-Selection of cases and grouping of individuals	03
included in the study	
B-Conventional Indirect TIgG ELISA:	85
Statistical Analysis	90
Statistical Analysis Results	90 94
Discussion	94 110
	121
Summary Conclusions and recommendations	
Conclusions and recommendations	128
References	130
Arabic summary	

List of Abbreviations

°C : Celsius degree
μg : Microgram
μl : Microliter
Ab : Antibody
Ag : Antigen

AUC : Area under the curveAWV : Adult worm vomitBSA : Bovine serum albumin

CB : Cathepsin B

CIEP : Countercurrent immunoelectrophoresis

CL : Cathepsin L CL 1 : Cathepsin L1

CT : Computed axial tomography

D. water : Distilled water

EITB : Enzyme immunoelectrotransfer blot
 ELISA : Enzyme-linked immunosorbent assay
 ERCP : Endoscopic retrograde cholangio-

pancreatography

E-S : Excretory-Secretory
F. hepatica : Fasciola hepatica
F. gigantica : Fasciola gigantica

FABP : Fatty acid binding protein

FAST-ELISA: Falcon Assay screening test, enzyme-linked

immunosorbent assay

FhAWV : Fasciola hepatica adult worm vomit

FhESP : Fasciola hepatica excretory secretory products

FhSAP2 : F.hepatica saposin-like protein-2 **FgTAg** : F. gigantica tegumental antigen **FhTAg** : F. hepatica tegumental antigen

Fig : Figure gm : gram IFN : Interferon

Ig : Immunoglobulin

IHAT : Indirect haemagglutination testIFA : Indirect immunofluorescence assay

IL : Interleukin

List of Abbreviations (Cont.)

KDa : Kilo Dalton

LAP : Leucine aminopeptidase

L. : LymnaeaM : Molarmin : Minuteml : MillilitermM : Milli mole

MRI : Magnetic Resonance Imaging

MW : Molecular weight

N. : Normal

NPV : Negative predictive value

O.D : Optical density

PBS : Phosphate buffer salinePCR : Polymerase chain reaction

PMSF : Phenyl methyl sulfonyl fluoride

PPV : Positive predictive value

ROC : Receiver Operating Characteristic

rpm : revolutions per minute

rproCL1 : Recombinant procathepsin L cystein proteinase

S. mansoni: Schistosoma mansoni

SDS-PAGE: Sodium dodecyl sulfate polyacrylamide gel

electrophoresis

Spp. : Species

TGF β: Tumor necrosis factor β

Th-1 : T helper 1 **Th-2** : T helper 2

TNF α : Tumor necrosis factor alpha

TSE : Total soluble extract

WHO : World health organizationMDA : mass drug administration

T :tegumental

List of Figures

Fig.	Subject	Page
1	Fasciola hepatica adult, Fasciola gigantica	0
	Adult	9
2	Life cycle of Fasciola spp.	10
3	Global distribution of fascioliasis.	11
4	Histological sections of acute and chronic fascioliasis.	13
5	Fasciola gigantica egg in an unstained wet mount (x400)	21
6	Adult <i>F. gigantica</i> worms after retrieval from bile duct of infected liver of cattle.	51
7	High Protein and Peptide Recovery Detergent Removal Resin kit step by step protocol.	59
8	Standard twin-plate mini gel unit.	62
9 A	Crude TA protein bands separated by SDS-PAGE in a 12%	72
9 B	gel stained by comassie blue stain	73
10	Electrophoresis run on dual slab cell	76
11	Pall Nanosep Microcentrifugal Device	81
12	An SDS-PAGE of 70 ug/ml concentration of TA in a 12% gel.	82
13	Receiver Operating Characteristic (ROC) curve representing the plot of sensitivity versus 1-specificity for <i>Fasciola gigantica</i> Somatic Ag tested in TIgG-ELISA using Fasciola and non Fasciola sera.	95
14	Receiver Operating Characteristic (ROC) curve representing the plot of sensitivity versus 1-specificity for <i>Fasciola gigantica</i> Excretory secretory Ag tested in TIgG-ELISA using <i>Fasciola</i> and non <i>Fasciola</i> sera	
15	Receiver Operating Characteristic (ROC) curve representing the plot of sensitivity versus 1-specificity for <i>Fasciola</i>	

Fig.	Subject	Page
	gigantica Tegumental Ag tested in TIgG-ELISA using Fasciola and non Fasciola sera	
16	Receiver Operating Characteristic (ROC) curve representing the plot of sensitivity versus 1-specificity for <i>Fasciola gigantica</i> Tegumental Ag subunit (16.5 KDa) tested in TIgG-ELISA using <i>Fasciola</i> and non <i>Fasciola</i> sera	
17	Bar chart comparing the diagnostic accuracy between all <i>Fasciola gigantica</i> prepared antigens.	106
18	ROC curves for the comparative analysis between all <i>Fasciola gigantica</i> prepared antigens (Somatic, Excretory-Secretory, Tegument and Tegumental 16.5 KDa subunit) in TIgG-ELISA.	
19	Comparative results of sensitivity and specificity obtained from TIgG- ELISA results calculated from ROC test on using the 4 antigens (Somatic, Excretory-secretory, Tegumental and the desired subunit (16.5 KDa).	107
20	Dot diagram plotting the detection of anti <i>F. gigantica</i> antibodies in sera from cases and control groups of the study.	108

List of Tables

Table	Subject	Page
1	Optimum antigen concentration, sera dilution and conjugate dilution for the prepared antigens.	94
2	Reactivity of Fasciola gigantica and non Fasciola sera against adult fasciola somatic (S) Ag in a TIgG ELISA.	95
3	Calculated parameters derived from ROC analysis of <i>Fasciola</i> Somatic Ag tested in TIgG ELISA.	96
4	Reactivity of Fasciola and non Fasciola sera against adult Fasciola Excretory-Secretory (E-S) Ag in a TIgG ELISA.	97
5	Calculated parameters derived from ROC analysis of <i>Fasciola</i> Excretory-Secretory(E-S) antigen tested in TIgG against <i>Fasciola</i> and non <i>Fasciola</i> sera.	99
6	Reactivity of <i>Fasciola</i> and non <i>Fasciola</i> sera against adult <i>Fasciola</i> fluke Tegumental Ag (TA) in a TIgG ELISA.	99
7	Calculated parameters derived from ROC analysis of <i>Fasciola</i> TA tested in TIgG against <i>Fasciola</i> and non <i>Fasciola</i> sera	101
8	Reactivity of <i>Fasciola</i> and non <i>Fasciola</i> sera against adult <i>Fasciola</i> TA subunit (16.5 KDa) assessed in a TIgG ELISA.	101
9	Calculated parameters derived from ROC analysis of <i>Fasciola gigantica</i> TA subunit (16.5 KDa) tested in TIgG against <i>Fasciola</i> and non <i>Fasciola</i> sera	103
10	Comparative analysis of the mean optical density of TIgG ELISA test using <i>Fasciola</i> S, E-S, TA and TA subunit 16.5 KDa between	104

Table	Subject	Page
	Fasciola and non Fasciola sera.	
11	Comparative analysis between the diagnostic accuracy, (AUC), Z and P-value of S, E-S Ag, TA and TA subunit (16.5 KDa) in TIgG-ELISA	

Introduction

Fascioliasis was recognized as a serious public health problem in human (WHO, 2005) with an estimated 17 million people infected worldwide (Mas-Coma, et al., 2005). It is a major parasitic disease that affects the health of humans and herbivorous animals. Worldwide losses in agriculture due to fascioliasis are estimated at over 2 billion dollars per year due to an increased in animal mortality and a reduction in productivity (Spithill et al., 2009 and Torgerson and Claxton, 2009).

Detection of anti-fluke antibodies in serum is considered a sensitive and reliable means for diagnosing acute infections and can also be used as an adjuvant to faecal analysis for the diagnosis of latent and chronic infections (Hillyer *et al.*, 1992).

Immunological techniques are superior in the diagnosis of human fascioliasis to molecular techniques which are still at experimental stage and very expensive. Immunodiagnosis aims to detect worm-specific antibodies in serum samples or worm-specific antigens in serum or stool samples (WHO, 2012).