

ثبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

في درجة حرارة من 15-20 مئوية ورطوبة نسبية من 20-40 %

To be kept away from dust in dry cool place of 15-25c and relative humidity 20-40 %

ثبكة المعلومات الجامعية

Department of Mathematics Faculty of Science Cairo University

The Design of an Intelligent Advising System

M. Sc. Thesis Submitted by

Muhsin Issa Al Hasan

In partial fulfillment of the requirements for the degree of M. Sc. in Computer Science

Supervised by:

Dr. Mohamed Ashraf El-Kosheiry

M. A. Fl-16d

Mathematics Dep., Faculty of Science, Cairo University Giza, Egypt.

Prof. B. T. Hassan

Director of Computer Studies Division at American University in Cairo Cairo, Egypt

Cairo-Egypt 2000

N/55

Approval Sheet

The Design of an Intelligent Advising System

Master Thesis Submitted by

Muhsin Issa Al Hasan

This thesis for the Master Degree in Computer Science, Department of Mathematics, Faculty of Science, Cairo University, has been approved by:

Name

Signature

Prof. B. T. Hassan

Dr. Mohamed Ashraf El-Kosheiry

M. A. El-M.L.

ACKNOWLEDGEMENT

I wish to express my sincere gratitude to Professor B. T. Hassan, head of the mathematics department for Faculty of Science at Cairo University.

Also I would like to thank Dr. Ashraf El-Kosheiry, for suggesting the plan of this work, spending uncounted hours of useful supervision with me, reading through the manuscript of this thesis and his very useful discussions. I also thank him for his help in knowledge acquisition as a domain expert, and for his kind support and guidance.

ABSTRACT

Next to grading, student advising in selecting courses for coming semester involves some of the most weary and difficult tasks that faculty encounter. Using computers makes the advising process more productive, and more pleasant, for both faculty and students. Using an expert system facilitates the enrollment process, where one can code the domain knowledge in the computer and link between it and the student records to provide the functions of a faculty advisor to student. This would help to reduce the tedium and improve the consistency in student advising.

In this research, we have chosen one of the most common methodologies in object-oriented software development; namely, Object Modeling Technique (OMT) developed by Rumbaugh to develop our system. We have developed a system called ISARS (Intelligent Student Advising and Registration System for Academic Advising). The proposed system will help an academic advisor at the Computer Studies Division of the American University in Cairo to advise students in selecting courses for the coming semester and register these students in those courses. Transcripts can be issued and the tuition fees due are reported.

For the analysis phase of the system, we have prepared a statement of the problem and built three models: the object model, the dynamic model, and the functional model. A statement of the problem was a result of the conceptualization phase. In this phase, we have defined the knowledge acquisition sources, studied and analyzed the concepts of the domain, selected the appropriate method for representing this knowledge.

For the system design, we have divided the proposed system into four subsystems. For the object design, we have determined the full definitions of classes used in the implementation, and written algorithms of the methods used to implement operations. For the system implementation, we have translated what was accomplished through analysis and design into code in Microsoft Visual C++ programming language. The system was then tested and evaluated on sample data sets.

The proposed system offers ease of use and maintenance, and provides accuracy of results. It is an advising and registration system that generates a full report on the selected courses by the student, checks on prerequisites, registers these courses, computes their costs, and computes the student GPA (Grade Point Average) along with the progress of the student. In addition, it allows the student to modify his previous registration by adding/dropping courses. It has subsystems for developing the data and knowledge in dynamic form (deleting, updating, and adding rule (or record)).

The system has a friendly user interface that allows the user to determine his responses by typing on the keyboard or clicking a mouse. Therefore, it can be used by advisors who have no prior computer skills.

Keywords: (Expert Systems, Knowledge – Based Systems, Intelligent Advising Systems, OMT, Object Modeling Technique, Advice Giving Systems).

Table of contents

Chapter 1 Introduction	1
1.1 Research Problem	2
1.2 The Difficulty in Advising Process.	2
1.3 The Benefits of Using Expert Systems in Academic Advising	2
1.4 The Aim of the Thesis	3
1.5 The Methodology	3
1.6 Thesis Overview.	4
	•
Chapter 2: Background: Expert Systems	5
2.1 Introduction to Expert Systems	6
2.1.1 Definition of AI and ES	6
2.1.2 The Advantage of ESs	6
2.1.3 Applications of ESs.	7
2.2 Expertise in ES	8
2.3 The Structure of ESs	9
2.3.1 Knowledge Acquisition subsystem	10
2.3.2 Knowledge Base	10
2.3.3 Inference Engine	11
2.3.4 User Interface.	11
2.3.5 Blackboard (Workplace)	11
2.3.6 Explanation Subsystem (Justifier)	11
2.3.7 Knowledge Refining System	12
2.4 ESs Development Tools	12
2.4.1 Expert system shells.	12
2.4.2 Artificial Intelligent Toolkits	13
2.4.3 Conventional Programming and Artificial Intelligent Languages	13
2.5 Knowledge Engineering	14
2.5.1 Assessment phase	14
2.5.2 Knowledge Acquisition phase	14
2.5.2.1 Written documents	15
2.5.2.2 Interviews	15
2.5.2.3 Questionnaires	15
2.5.2.4 Observation	15
2.5.2.5 Sampling	15
2.5.3 Design phase	16
2.5.3.1 Selecting knowledge representation technique	16
2.5.3.1.1 Rule-Based Knowledge Representation	17
2.5.3.1.2 Frame-Based Knowledge Representation	17
2.5.3.1.3 Object-Based Knowledge Representation	18
2.5.3.1.4 Network-Based Knowledge Representation	19

2.5.3.1.5 Logic-Based Knowledge Representation	19
2.5.3.2 Select control technique	20
2.5.3.2.1 Forward chaining	20
2.5.3.2.2 Backward chaining	20
2.5.3.3 Select expert system development software	21
2.5.3.4 Develop the prototype	21
2.5.3.5 Develop the interface	21
2.5.3.6 Product Development	21
2.5.4 Testing phase	22
2.5.5 Documentation phase	22
2.5.5 Maintenance phase	22
2.5.5 Maintonairee pinase	
Chapter 3: ISARS-System Analysis	24
3.1 Conceptualization	26
3.1.1 The ISARS System Domain Knowledge	27
3.1.1.1 Knowledge Acquisition	27
3.1.1.1 General Domain Knowledge	27
3.1.1.1.2 Prerequisite Knowledge	29
3.1.1.1.3 Schedule Document	30
3.1.1.2 Knowledge Representation	31
3.1.1.3 A Statement of the Problem	33
3.1.1.4 ISARS System Requirements	33
· · · · · · · · · · · · · · · · · · ·	34
3. 2 ISARS-Object Model	34
3. 2.1 Identify object classes	34
3. 2.1.1 Listing Tentative Classes	35
	36
3. 2.2 Listing Tentative Associations (and aggregations)	40
3. 2.3 Listing Tentative Attributes of Objects and Links	42
3. 2.4 Prepare the Data Dictionary	43
3. 3 ISARS-Dynamic Model	44
3. 3.1 Typical Scenarios in the ISARS System	49
3. 3.2 Event flow diagram	
3. 3.3 State Diagrams	50
3. 3.4 Data Dictionary	52
3. 4 ISARS-Functional Model	53
3. 4.1 Identify input and output values	53
3. 4.2 Specify use cases	54
3. 4.3 Specify operations from the object model	54
3. 4.4 Specify operations from the dynamic model	54
3. 4.5 Choose one or more functional modeling paradigms	55

Chapter 4: ISARS-Design and Implementation	5 7
4.1 The System Design	58
4.1.1 Organizing the System into Subsystems	58
4.1.1.1 Expert Advisor subsystem	58
4.1.1.2 Database subsystem	60
4.1.1.3 Knowledge Acquisition subsystem	60
4.1.1.4 User Interface subsystem	60
4.1.2 Choosing the Strategy for Implementing Data Stores	61
4.1.3 Choosing an Implementation for External Control	61
4.1.4 Choosing an Approach to Object Identity	61
4.1.5 Specifying Default Policies for Detailed Design	62
4.2 ISARS-Object Design	62
4.2.1 Elaborate the Object Model	62
4.2.1.1 Add Candidate Keys	62
4.2.1.2 Assign Domains	63
4.2.1.3 Specify Nulls	63
4.2.1.4 Estimate Physical Storage	63
4.2.2 The Remaining Steps	64
4.2.2.1 Database Subsystem	64
4.2.2.1.1 CStudent Class	64
4.2.2.1.2 Student Screen class	65
4.2.2.1.3 Enrollment Screen class	67
4.2.2.2 Knowledge Acquisition subsystem	68
4.2.2.2.1 PrimaryKB class	68
4.2.2.2.2 PrimaryKB Screen class	68
4.2.2.3 Expert Advisor Subsystem	69
4.2.2.3.1 InferEng class	69
4.2.2.3.1.1 InferEng Class User Events	69
4.2.2.3.1.2 Implement Associations	70
4.2.2.3.1.3 Global Variables Definition	71
4.2.2.3.1.4 InferEng Operations	73
4.2.2.3.1.4.1 Depicted Operations of Analysis Phase	73
4.2.2.3.1.4.2 Assisted Operations	74
4.2.2.4 User Interface Subsystem	75
4.2.2.4.1 Main Screen	75
4.2.2.4.2 Data Interface class	76
4.2.2.4.3 Student ID Screen class	77
4.2.2.4.4 Available Crs Screen class	77
4.2.2.4.5 Conclusion Screen class	78
4.2.2.4.6 StuLevel Screen class	80
4.3 ISARS-System Implementation.	81
4.3.1 Defining Class.	81
4.3.2 Creating a class Instance	83
4.3.3 Defining Operations.	83
4 3 4 Calling Operations	84

4.3.5 Implementing Associations and Aggregation	84
Chapter 5: ISARS-Testing and Evaluation	85
5.1 Testing for the First Constraint. 5.1.1 New Student Case. 5.1.2 Returning Student Case. 5.2 Testing for the Second Constraint. 5.3 Testing for the Third Constraint. 5.4 Testing for the fourth Constraint. 5.5 Testing Passing All the Curriculum Courses. 5.6 Testing the Enrollment and Modifying Enrollment Processes. 5.6.1 Testing the Enrollment Process. 5.6.2 Testing the Enrollment Modification Process.	86 86 87 89 92 95 96 97 97
Chapter 6: Conclusion and Future Work	103
Appendix A: Knowledge Acquisition Process (Interview)	106
Appendix B: Knowledge Sources in ISARS	109
Appendix C: ISARS-Inference Engine Algorithms	116
References	131

Chapter 1

Introduction