Parasitological &Ultrastructural study of the effect of Probiotics, Oregano oil and *Quillaja saponaria* on Isolated

Blastocystis hominis Thesis

Submitted for fulfillment of Master Degree in Basic Medical Sciences (Parasitology)

 $\mathbf{B}\mathbf{y}$

Shaimaa Fouad Mohammed Yassin (M.B.B.CH)

Supervised by

Prof. Dr. Fadia Mohammed Anwar Amin

Professor of Parasitology
Faculty of Medicine
Cairo University

Prof. Dr. Neimat Moussa Amer

Professor of Parasitology
Theodor Bilharz Research Institute

Dr.Nahed Fouad Farrag

Lecturer of Parasitology
Faculty of Medicine
Cairo University

(2015)

بسم الله الرحمن الرحيم

To my dearly beloved parents

To my husband

To my sisters and brother

To my firend Dr.Rasmia

without their everlasting love,

encouragement & sacrifices, this

work would never have been

completed

Abstract

*Blastocysti*s is a protozoan parasite that inhabits the human intestinal tract. Various epidemiological surveys have recorded 50-60% prevalence in developing countries. Nitazoxanide is a commonly used drug in treatment of *Blastocystis* infection especially in metronidazole treatment failure. However, undesirable side effects and treatment failures were reported.

To investigate the effect of probiotics, Oregano oil and *Quillaja* saponaria (*QS*) as natural compounds against isolated *Blastocystis* in comparison to nitazoxanide, fresh stools samples positive for *Blastocystis* were processed for in vitro cultivation using locke serum media. Three criteria were used to test the drug's efficacy, Living cell count (LCC), Living cell rate (LCR) and ultra-structure changes as seen by transmission electron microscope (TEM).

All the tested compounds used at higher concentrations showed a significant reduction in both LCC and LCR with p value< 0.001 and significant ultra-structural changes as seen by TEM. The tested compounds were arranged according to their LCR % on day one as follows: QS (1000 µg/ml) (47.1%), oregano oil (3200µg/ml) (49.5%), probiotics (500µg/ml) (57.0%) and nitazoxanide (0.776µg/ml) (62.5%).

QS, oregano oil and probiotics are promising new herbal therapeutic agents against *Blastocystis*.

Key wards: Blastocystis, probiotics, oregano oil, QS, LCC, LCR, TEM.

Content

•	Ac	knowledgement	I
•	Lis	st of Abbreviations	III
•	Lis	st of Figures	VI
•	Lis	st of Tables	X
•	Int	troduction	1
•	A i	im of work	3
•	Bla	astocystis	4
	0	Historical Review and Taxonomy	4
	0	Epidemiology	6
	0	Morphology	8
	0	Life cycle &Mode of Transmission	16
	0	Pathogenicity and pathogenesis	20
	0	Clinical pictures	23
	0	Clinical Associations	23
		Gastro-Intestinal Diseases	23
		Immunosuppression	24
		Skin Diseases	24
		Joint Arthritis	25

Conter	
Diabetes & leukemia	25
o Diagnosis	26
o Treatment	32
• Electron Microscope	48
o Definition	48
o Types	49
o Sample Preparation	50
Disadvantages of Electron Microscopy	52
Material and Methods	54
• Results	72
• Discussion	86
• Summary& Conclusion	99
• Recommendations	103
• References	104

• Arabic summary.....

ACKNOWLEDGEMENT

The making of this MSc thesis has been a challenging, exciting and educational experience both professionally and personally.

The study is based on both laboratory and imaging results and could not have been carried out without the help of numerous persons whom I wish to thank for their efforts and support throughout the study.

I would like to express high appreciation and my deepest gratitude to **Prof. Dr. Mona Mahmoud Ali**, Professor of Parasitology and Head of Parasitology Department, Faculty of Medicine, Cairo University, for her generous support and encouragement to achieve this work.

I deeply thank my mentor and supervisor, **Prof. Dr. Fadia Mohammed Anwar Amin**, Professor of Parasitology, Faculty of Medicine, Cairo University. She had set the plan, followed the steps of the work and critically discussed the results, making this thesis would not have been possible without her expert knowledge and support.

I would like to express my gratitude and appreciation toward **prof. Dr.**Neimat Moussa Amer, Professor of Parasitology, TBRI, for her extremely valuable guidance, constant encouragement, kindness, and cooperation to achieve this work.

I offer my deepest appreciation to **Dr. Nahed Fouad Farrag**, Lecturer of Parasitology, Cairo University, for her great help, support, constructive criticism and cooperation to achieve this work.

I owe special thanks to **Prof. Dr. Zeinab Hassanein Fahmy**, Professor of Parasitology, TBRI, for providing facilities, valuable advices and indispensable help throughout the parasitological work.

I would like to thank **Dr. Magda Azmi**, Lecturer of Electron Microscope for her help and cooperation throughout the Electron Microscope work.

I would like to thank all the staff members in Parasitology department in both TBRI and faculty of medicine, Cairo University for their encouragement and cooperation throughout the work.

My deepest appreciation and inexpressible gratitude to my family for their never ending support and care.

This work was done by and for the sake of patients, May Allah alleviate their suffering and accept our honest intention to dedicate this work for the sake of their own benefit. I hope this work offers a chance for a better state of health which they deserve after their long pains and suffering.

	List of Abbreviation
AAD	Antibiotic-associated diarrhea
ACE	Angiotensin Converting Enzyme
AFT	Acid Fast Trichrome
B. hominis	Blastocystis hominis
B. ratti	Blastocystis ratti
CaCl2	Calcium chloride
CD	Cluster of differentiation
CDAD	Clostridium difficile associated diarrhea
CDC	Centers for Disease Control and prevention
CV	Central vacuole
CW	Cyst wall
EC	Eosin-brilliant cresyl blue
ELISA	Enzyme linked immunosorbent assay
EM	Electron microscope
er	Endoplasmic reticulum
ESEM	Environmental scanning electron microscope
FL	Fibrillar layer
gly	Glycogen
GM-CSF	granulocyte-macrophage colony-stimulating factor
gr	Granules
HIV	Human immunodeficiency virus
IBS	Irritable bowel syndrome
IFA	Indirect fluorescent antibody
IgA	Immunoglobulin A

IgE	Immunoglobulin E
IgG	Immunoglobulin G
IL	Interleukin
Iron Hx	Iron hematoxylin
KCl	Potassium chloride
keV	Kilo electron volt
KH2PO4	Potassium di hydrogen phosphate
LAB	Lactobacillus
LCC	Living cell count
LCR	Living cell rate
LDL	Low-density lipoprotein
m	Mitochondria
MgCl2	Magnesium chloride
MLC	Minimal lethal concentration
MLO	Mitochondrial like organelles
Na2HPO4	Sodium phosphate dibasic
NaCl	Sodium chloride
NaHCO3	Sodium bicarbonate
NEC	Necrotizing enterocolitis
Nu	Nuclei
O.compactium	Origanum compactum
O.gratissimum	Origanum gratissimum
O.onites	Origanum onites
O.vulgare	Origanum vulgare
OsO4	Osmium-tetroxide
P value	Probability value

PCR	Polymerase chain reaction
PFOR	Pyruvate ferredoxin oxido reductase
PTA	Phosphotungisten
QS	Quillaja saponaria
r.p.m	Revolutions per minute
RCT	Randomized control study
RFLP	restriction fragment length polymorphism
SC	Surface coat
SD	Standard deviation
SEM	Scanning Electron Microscope
Spp	Species
SSU-rDNA	Small sub-unit ribosomal deoxyribonucleic acid
SSUrRNA	Small subunit ribosomal ribonucleic acid
TBRI	Theodor Bilharz Research Institute
TEM	Transmission electron microscopy
Th2	T-helper 2
TMP-SMX	Trimethoprim-Sulfamethoxazole
t-test	Student test
UCT	Ultra-cut
UVR	Ultraviolet rays
V	Vacuole
WHO	World health organization

List of Figures		
Figures		Page
Figure (1a):	a) Light microscopy of <i>Blastocystis spp</i> . vacuolar forms:	9
	in a wet mount stained in iodine.	
Figure (1b):	b) Transmission electron micrograph of <i>Blastocystis spp</i> .	
	from laboratory culture, showing vacuolar form with	
	large central vacuole (cv), three nuclei (Nu), surface	
	coat (SC), and mitochondrion-like organelles(MLO).	
Figure (2a):	a) Light microscopy of <i>Blastocystis spp</i> . granular Form	10
	and vacuolar form iodine stained above a vacuolar	
Figure (2b):	form; below a granular form.	
	b) Transmission electron micrograph of <i>Blastocystis spp</i> .	11
	from laboratory culture, showing granular (gr) form	
	with clumps of granules in the central vacuole (cv).	
Figure (3):	Transmission electron micrographs of Blastocystis spp.	12
	showing amoeboid form a- Large central vacuole (cv)	
	containing electron-dense particles is seen. A surface coat	
	surrounds the parasite cell. Note that the surface coat (sc)	
	is about five times thicker at some parts of the parasite cell	
	(arrow) than the remaining parts. b- A large mitochondria	
	(m) (approximately 1.5 μ) with prominent cristae is seen.	
	Multiple vacuoles (v) appear to be bounded by strands of	
	ribosome.	

Figure (4a):	a) Light microscopy of cyst form of Blastocystis spp. in	13
	laboratory culture showing a thickened wall and inner	
Figure (4b):	vacuole.	
	b) Transmission electron micrograph of the cyst form of	14
	Blastocystis spp. showing the multilayered cyst wall	
	(CW) and an outer fibrillar layer (arrows). Two nuclei	
	(Nu) are noted in this ultrathin section of the	
	organism. A large accumulation of glycogen (gly) is	
	seen in the cytoplasm.	
Figure (5a):	a) Light microscope of Blastocystis spp. showing	15
	multivacuolar forms in fresh fecal material wet mount	
	and unstained.	
Figure (5b):	b) Transmission electron micrograph of <i>Blastocystis spp</i> .	16
	showing avacuolar form obtained at colonoscopy in	
	addition to a crescentic band (asterisks), the nucleus	
	(Nu) contains clumps of electron-opaque material	
	(arrow) Mitochondrion-like organelles (MLO) and	
	rough endoplasmic reticulum (er) is abundant in the	
	cytoplasm.	
Figure (6):	Proposed life cycle for different <i>Blastocystis</i> genotypes.	19

Figure (7):	Model for pathogenesis of Blastocystis spp. Blastocystis	22
	infection may result in a variety of pathological outcomes	
	such as secretory IgA degradation, barrier function	
	compromise, host cell apoptosis, and induction of	
	proinflammatory cytokines. IgA degradation and barrier	
	disruption may promote the growth and invasion of	
	neighboring pathogens. Granulocyte-macrophage colony-	
	stimulating factor (GM-CSF).	
Figure (8):	TEM of Blastocystis spp. in culture; vacuolar form	53
	containing many nuclei (N), mitochondria (m), and	
	surrounded by outer fibrillar layer (FL).	
Figure (9):	TEM of Blastocystis.; with nuclei (N), mitochondria (m)	53
	and endoplasmic reticulum (er). A macrophage with	
	prominent phagosome is seen opposite Blastocystis spp.	
Figure (10):	Horse serum and used powders to prepare locke medium	61
Figure (11):	7ml culture tubes containing 5 ml prepared locke serum	62
Figure (12):	Probiotics containing <i>LAB</i> .	64
Figure (13):	Oregano oil	64
Figure (14):	Quillaja powder containing 10 % saponin	65
Figure (15):	Nitazoxanide with a concentration 100 mg/5ml	66
Figure (16):	Vacuolar form of Blastocystis spp. stained with Giemsa	72
	stain.	
Figure (17):	Blastocystis spp. (binary fission) stained with Giemsa	73
	stain.	

Figure (18):	Cyst form of <i>Blastocystis spp</i> . stained with Giemsa stain.	73
Figure (19):	Viable <i>Blastocystis spp.</i> (intact membrane) Stained greenish tinge with EC blue stain.	76
Figure (20):	Non-viable <i>Blastocystis spp</i> . stained red with EC blue stain.	76
Figure (21):	Median LCR % for day one <i>Blastocystis spp</i> . exposed to different concentrations of <i>QS</i> , oregano oil, probiotics and nitazoxanide compared to non – treated control and (ethanol treated control for oregano oil only).	78
Figure (22):	TEM of <i>Blastocystis spp</i> . treated with <i>QS</i> 100 μg/ml showing programmed cell death with apoptotic features.	79
Figure (23):	TEM of <i>Blastocystis spp.</i> treated with oregano oil 200μg/ml showing complete autolysis with cell membrane rupture.	80
Figure (24):	TEM of <i>Blastocystis spp</i> . exposed to probiotic 150 μg/ml showing shrinkage of cell membrane with programmed cell death.	82
Figure (25):	TEM of <i>Blastocystis spp</i> . exposed to nitazoxanide 0.017 μg/ml showing cell swelling and distorted cell shape, a redistribution of vacuoles, plasma membrane damage, and the formation of extensive empty areas in the cytoplasm.	83
Figure (26):	TEM of <i>Blastocystis spp</i> .in Drug free culture media showing characteristic nuclear morphology.	85