FERTIGATION MANAGEMENT BASED ON SIMULATION MODELS

By

AYMAN SAMIR OSMAN EL-ABD

B. Sc. Agric. Sc. (Agricultural Engineering), Ain Shams University, 2012

A Thesis Submitted in Partial Fulfillment Of the Requirements for the Degree of

MASTER OF SCIENCE

in

Agricultural Sciences
(On-Farm Irrigation and Drainage Engineering)

Department of Agricultural Engineering
Faculty of Agriculture
Ain Shams University

Approval Sheet

FERTIGATION MANAGEMENT BASED ON SIMULATION MODELS

By

AYMAN SAMIR OSMAN EL-ABD

B. Sc. Agric. Sc. (Agricultural Engineering), Ain Shams University, 2012

This thesis for M.Sc. Degree has been approved by:

Dr. Hazem Sayed Mehawed Chief Researcher, Agricultural Engineering Research Institute, Agriculture Research Centre Dr. Ahmed Abou El-Hassan Abdel-Aziz Prof. of Agricultural Engineering, Faculty of Agriculture, Ain Shams University Dr. Yasser Ezzat Arafa Prof. of Agricultural Engineering, Faculty of Agriculture, Ain Shams University Dr. Abdel-Ghany Mohamed El-Gindy Prof. Emeritus of Agricultural Engineering, Faculty of Agriculture, Ain Shams University

Date of examination: / /

FERTIGATION MANAGEMENT BASED ON SIMULATION MODELS

By

AYMAN SAMIR OSMAN EL ABD

B. Sc. Agric. Sc. (Agricultural Engineering), Ain Shams University, 2012

Under Supervision of:

Dr. Abdel-Ghany Mohamed El-Gindy

Prof. Emeritus of Agricultural Engineering, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University (Principal Supervisor).

Dr. Yasser Ezzat Arafa

Prof. of Agricultural Engineering, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University.

Dr. Mohamed Morsy Hussein

Research Prof. Emeritus of Water Relations and Field Irrigation, Department of Water Relations and Field Irrigation, National Research Centre.

ABSTRACT

Ayman Samir Osman El-Abd: Fertigation Management Based on Simulation Models. Unpublished M.Sc. Thesis, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University, 2018.

Although, fertigation technique is ordinarily used to guarantee a stable productivity of crop-unit area and also to improve yield quality, but on the other hand, fertigation became undesirable due to its critical effect on agro-environmental resources and human beings. Furthermore, disability of irrigation systems because of clogging and energy-head losses enlargement due to chemical involvement in different equipment which represents a serious problem for applying such technology and assigned techniques, In addition to its impact on either yield production and assigned quality parameters or agro-physical resources. The abovementioned problems could be avoided by the following: good management practices of each parts of fertigation technique, i.e. irrigation systems; water, fertilizers and injecting equipment.

Fertigation system management requires a substantially-specific database of available resources and convenient field status and conditions. Management information systems (MIS) plays a crucial role and can be effective tool to be used efficiently. One of these tools is called Simulation Models (SM) which represents designing a model for a real system and doing experiments over this model for the purpose of understanding the behavior of the system of the system or to evaluate strategies for the operation of the system.

The aim of this investigation was to build, verify and validate a simulation model for managing fertigation technique under arid ecosystem conditions of Egyptian agriculture.

Results and system indicated that it is possible to use the simulation model for estimating the fertigation management parameters

accurately. In addition, some of the observed results can be summarized as following:

- 1- There were improving and increasing in the yield of potato based on simulated irrigation water and fertilizers rate by using Fertigation Mag-SM in both seasons where it increased of 19.5% in the 2015 season and 11.4% season in the 2016 season compared to conventional methods.
- 2- The highest yields of potato at 75% of full irrigation (FI) and 100% of full fertilizers (NPK) were (14.05 ton fed⁻¹) based on simulated water and fertilizers using Fertigation Mag-SM and (13.21 ton fed⁻¹) using the conventional control during 2015 season and Were (14.5 ton fed⁻¹) based on simulated water and fertilizers using Fertigation Mag-SM and (13.78 ton fed⁻¹) using the conventional control during 2016 season.
- 3- Maximum value of WUE of potato yield was (5.77 Kg m⁻³) at 75% of FI and 100% of NPK based on simulated water and fertilizers using Fertigation Mag-SM and (5.14 Kg m⁻³) using the conventional control in 2015 season and were (6.77 Kg m⁻³) based on simulated water and fertilizers using Fertigation Mag-SM and (6.02 Kg m⁻³) using the conventional control in 2016 season.
- 4- Maximum value for FUE for potato was at 75% of FI and 50% of NPK, as NUE (268.9 Kg Kg⁻¹), PUE (372.3 Kg Kg⁻¹) and KUE (169.8 Kg Kg⁻¹) based on simulated water and fertilizers and were NUE (242.0 Kg Kg⁻¹) PUE (372.3 Kg Kg⁻¹) and KUE (161.3 Kg Kg⁻¹) using the conventional control in season 2015, and were NUE (274.5 Kg Kg⁻¹), PUE (417.2 Kg Kg⁻¹) and KUE (183 Kg Kg⁻¹) based on simulated water and fertilizers and were NUE (260.8 Kg Kg⁻¹) PUE (401.2 Kg Kg⁻¹) and KUE (173.8 Kg Kg⁻¹) using the conventional control in season 2016

Key Words:

Irrigation systems, Fertigation, Vegetable crops, Soils, Management criteria.

ACKNOWLEDGMENT

First of all, glory, praise, and gratitude are due to almighty Allah for supporting me all the way of my life.

I would wish to express deep thanks and appreciation and sincere gratitude to my supervisors **Dr. Abdel-Ghany Mohamed El-Gindy** and **Dr. Yasser Ezzat Arafa** Professors of Agricultural Engineering, Faculty of Agriculture, Ain Shams University, for suggesting the research problems, handling the problem solving method, continuous advising throughout this work, valuable suggestions and revising the thesis.

Sincere gratitude is also extended to **Dr. Mohamed Morsy Hussein,** Research Prof. of Water Relations and Field Irrigation, Department of Water Relations and Field Irrigation, National Research Centre, for possible help and guidance, kindly supervision, continuous support, and sincere criticism throughout the period of study.

I would wish to express my greatest appreciation and deepest gratitude to **Dr. Abdelraof Ramadan** and **Dr. Ahmed Faris Elshafey** Assistant Professors of Agricultural Engineering, Department of Water Relations and Field Irrigation, National Research Centre, for their great efforts during the preparation of this work, supervision, generous encouragement, providing me with all required facilities and experience, in addition to revising the manuscript.

Great thanks to all my colleagues especially **Eng. Kamel El-Tohamy** Assistant Lecturer of Water Relations and Field Irrigation, Department of Water Relations and Field Irrigation, National Research Centre, as well as, all who had lent me a hand to complete this work.

Great thanks for All Agricultural Engineering Department members, Faculty of Agriculture, Ain Shams University.

Finally, great thanks to **mother, father** and all members of my family for their support and attention.

.

CONTENTS

		Page
	LIST OF TABLES-	
	LIST OF FIGURES	
	LIST OF PLATES	
I	INTRODUCTION	1
II	REVIEW OF LITERATURE	3
2.1	Simulation modeling Therapy (SM)	3
2.1.1	Definition and behavior	3
2.1.2	Advantages and disadvantages of SM	3
2.1.3	Building a simulation model	4
2.1.4	Simulation model verification and validation	7
2.1.5	Simulation modeling in on-farm irrigation engineering	8
2.2	Fertigation Management	12
2.2.1	Effects on fertilizing application via irrigation water	13
2.2.2	Environmental impact of fertigation	16
2.3	IT Applications on Improving Fertigation Management	
	Efficiency	19
III	MATERIALS AND METHODS	21
3.1	Buildup of simulation model	21
3.1.1	Description of a developed simulation model	21
3.1.1.1	Main sub-model	22
3.1.1.2	Location sub-model	22
3.1.1.3	Climate sub-model	22
3.1.1.4	Crop type sub-model	22
3.1.1.5	Fertilizers sub-model	23
3.1.1.6	Soil sub-model	23
3.1.1.7	Irrigation sub-model	23
3.1.1.8	Output sub-model	23
3.2	Fertigation technique management theory	28
3.2.1	Irrigation and water systems	31
3.2.2	Applied fertilizers	32

3.2.3	Agrochemicals injectors	3			
3.2.4	Crop types	3			
3.2.5	Soil characteristics	3			
3.2.6	Fertigation requirement calculation	3			
3.3	Verification of the developed-SM	4			
3.4	Validation of case-study	4			
3.4.1	Experimental site description	4			
3.4.2	Irrigation system components and experimental site layout	4			
3.4.3	Crop type	4			
3.4.4	Meteorological data	4			
3.5	Statistical analysis	4			
IV	RESULTS AND DISCUSSION	4			
4.1	Conventional and simulated irrigation water	4			
4.2	Conventional and simulated fertilizer rates	4			
4.3	Effect of conventional and simulated irrigation water on				
	yield and biological yield	5			
4.4	Effect of conventional and simulated fertilizer rates on yield				
	and biological yield during season	5			
4.5	Effect of interaction of conventional and simulated irrigation				
	water and fertilizer rate on yield and biological				
	yield	5			
4.6	Effect of conventional and simulated irrigation water and				
	fertilizer rate and their interaction on water use efficiency of				
	potato (Judgmental indices analysis)	6			
4.7	Effect of conventional and simulated irrigation water and				
	fertilizer rateand their interaction on fertilizers use efficiency				
	of potato (Judgmental indices analysis)	6			
\mathbf{V}	SUMMARY AND CONCLUSIONS	7			
VI	REFERENCES	7			
VII	APPENDICES	8			
VIII	ARABIC SUMMARY				

LIST OF TABLES

		Page
Table (1):	Survey of IT systems for irrigation water	
	management	20
Table (2):	Solubility of common fertilizers in water	33
Table (3):	Solubility of some fertilizers in irrigation	
	water	34
Table (4):	Some soil physical properties at the experimental	
	site	38
Table (5):	Some soil chemical characteristics at the	
	experimental site	38
Table (6):	Irrigation water chemical characteristics at the	
	experimental site	39
Table (7):	Reference data of crop length, single crop	
	coefficient (Kc), crop height (h), and root zone	
	depth (Zr) for the four stages of growth for	
	potatoes (FAO56)	45
Table (8):	Conventional and simulated irrigation water	
	during season 2015, 2016 and average	47
Table (9):	Conventional and simulated fertilizer rate during	
	seasons 2015 and 2016	50
Table (10):	Effect of conventional and simulated irrigation	
	water on yield and biological yield during season	
	2015	54
Table (11):	Effect of conventional and simulated irrigation	
	water on yield and biological yield during season	
	2016	54
Table (12):	Effect of conventional and simulated fertilizers	
	rate on yield and biological yield during season	
	2015	57
Table (13):	Effect of conventional and simulated fertilizers	
	rate on yield and biological yield during season	

	2016	5
Table (14):	Effect of interaction of conventional and	
	simulated irrigation water and fertilizer rate on	
	yield and biological yield during season	
	2015	6
Table (15):	Effect of interaction of conventional and	
	simulated irrigation water and fertilizer rate on	
	yield and biological yield during season	
	2016	62
Table (16):	Effect of conventional and simulated irrigation	
	water and fertilizer rate and their interaction on	
	water use efficiency of potato during season	
	2015	66
Table (17):	Effect of conventional and simulated irrigation	
	water and fertilizer rate and their interaction on	
	water use efficiency of potato during season	
	2016	6
Table (18):	Effect of conventional and simulated irrigation	
	water and fertilizer rate and there interaction on	
	fertilizers use efficiency of potato during season	
	2015	70
Table (19):	Effect of conventional and simulated irrigation	
	water and fertilizer rate and there interaction on	
	fertilizers use efficiency of potato during season	
	2016	7
Table (20):	Weather data during the growing season	85
Table (21):	Calculating crop water requirement for season	
	2015	88
Table (22):	Calculating crop water requirement for season	
	2016	92

LIST OF FIGURES

		Page
Fig. (1):	A multi-step flow chart for constructing a successful	
	simulation study	7
Fig. (2):	A dynamic network for fertigation management	
	technology	30
Fig. (3):	Venture device.	38
Fig. (4):	Positive Displacement pump	39
Fig. (5):	Experimental layout and system components	44
Fig. (6):	Average conventional and simulated irrigation water	
	during season 2015, 2016	48
Fig. (7):	Average conventional vs. simulated irrigation water	
	during both of seasons 2015, 2016	48
Fig. (8):	Conventional and simulated fertilizer rate during season	
	2015	51
Fig. (9):	Conventional and simulated fertilizer rate during season	
	2016	51
Fig. (10):	Conventional vs simulated fertilizers during season	
	2015	52
Fig. (11):	Conventional vs simulated fertilizers during season	
	2016	52
Fig. (12):	Effect of conventional and simulated irrigation water on	
	yield and biological yield during season	
	2015	55
Fig. (13):	Effect of conventional and simulated irrigation water on	
	yield and biological yield during season	
	2016	55
Fig. (14):	Effect of conventional and simulated fertilizers rate on	

	yield and biological yield during season	
Fig. (15):	2015	58
	Effect of conventional and simulated fertilizers rate on	
	yield and biological yield during season	
	2016	58
Fig. (16):	Effect of interaction of conventional and simulated	
	irrigation water and fertilizer rate on biological yield	
	during season 2015	63
Fig. (17):	Effect of interaction of conventional and simulated	
	irrigation water and fertilizer rate on yield during	
	season 2015.	63
Fig. (18):	Effect of interaction of conventional and simulated	
	irrigation water and fertilizer rate on biological yield	
	during season 2016	64
Fig. (19):	Effect of interaction of conventional and simulated	
	irrigation water and fertilizer rate on yield during	
	season 2016	64
Fig. (20):	Effect of conventional and simulated irrigation water	
0 ()	and fertilizer rate and their interaction on water use	
	efficiency of potato during season 2015	68
Fig. (21):	Effect of conventional and simulated irrigation water	
8 ()	and fertilizer rate and their interaction on water use	
	efficiency of potato during season 2016	68
Fig. (22):	Effect of conventional and simulated irrigation water	
g · ()·	and fertilizer rate and there interaction on fertilizers use	
	efficiency of potato during season	
	2015	72
Fig. (23)	Effect of conventional and simulated irrigation water	, _

	and fertilizer rate and their interaction on fertilizers use						
	efficiency	of	potato	durir	ng	season	
	2016						73
Fig. (24)	Conventional	and	simulated	irrigation	water	during	
	season 2015						85
Fig. (25)	Conventional	and	simulated	irrigation	water	during	
	season 2016						86
Fig. (26)	Conventional	VS	simulated	irrigation	water	during	
	season 2015						86
Fig. (27)	Conventional	VS	simulated	irrigation	water	during	
	season 2016						87

VIII

LIST OF PLATES

	Page
Opening screen of the Fertigation Mag-SM program	24
Location Data screen of the Fertigation Mag-SM	
Climatic Data screen of the Fertigation Mag-SM	2525
Crop Data screen of the Fertigation Mag-SM program	26
Fertilizers Data screen of the Fertigation Mag-SM	
Soil Data screen of the Fertigation Mag-SM	26
Irrigation Data screen of the Fertigation Mag-SM	27
program	27
Output of the Fertigation Mag-SM program	38
	Location Data screen of the Fertigation Mag-SM program. Climatic Data screen of the Fertigation Mag-SM program. Crop Data screen of the Fertigation Mag-SM program. Fertilizers Data screen of the Fertigation Mag-SM program. Soil Data screen of the Fertigation Mag-SM program. Irrigation Data screen of the Fertigation Mag-SM program.