

Prediction of Pregnancy Outcome in ICSI Cycles Using Endometrial and Total Follicular Volume in the Day of HCG Trigger

Thesis

Submitted for Partial Fulfillment of Master Degree in Obstetrics & Gynecology

By

Gehan Mahmoud Abdelmoty

MB.B.CH, Ain Shams University, 2005 Obstetrics and Gynecology Resident at Bahteem Central Hospital Ministry of Health and Population

Supervised by Prof.

Yasser Mohamed Ali Abo-Talib

Professor of Obstetrics and Gynecology Faculty of Medicine - Ain Shams University

Assistant Prof.

Mohamed Abdel-Hameed Abdel-Hafeez

Assistant Professor of Obstetrics and Gynecology Faculty of Medicine - Ain Shams University

Dr.

Radwa Mansour Mohamed

Lecturer in obstetrics and gynecology Faculty of Medicine - Ain Shams University

Faculty of Medicine - Ain Shams University
2017

Acknowledgment

First thanks are all due to ALAH for blessing this work until it has reached its end as a part of this generous help throughout my life.

I wish to express my thanks and profound gratitude to **Professor Masser Mohamed Ali Abo-Talib**, Professor of Obstetrics and Gynaecology, Faculty of Medicine, Ain Shams University, who continues supervision, advice and fruitful criticism have been of great help in performing this work

Also, I am deeply indebted to doctor **Dr. Mohamed**Abdel-Hameed Abdel-Hafeez Assistant Professor of

Obstetrics and Gynaecology, Faculty of Medicine, Ain

Shams University, for his valuable instructions, inspiring

guidance and support throughout this work.

Also, I am deeply indebted to doctor **Dr. Radwa**Mansour Mohamed Lecturer of Obstetrics and

Gynaecology, Faculty of Medicine, Ain Shams University,

for her valuable instructions, inspiring guidance and

support throughout this work.

Also, I would thank all patients who stand beside me and tolerate all my instructions to complete this work till its end.

Finally I wish to say "thanks my father " and "thanks my mother" whom I am grateful and Allah bless them.

Gehan mahmoud

List of Contents

Title	Page No.
List of Tables	4
List of Figures	6
List of Picture	8
List of Abbreviations	9
Protocol	
Introduction	1
Aim of the Work	16
Review of Literature	
Overview of Infertility	17
 Sonographic Imaging of Infertility Patients 	46
3D Ultra Sound in ICSI	56
Patients and Methods	67
Results	73
Discussion	107
Summary	114
Conclusion	118
Recommendations	118
References	119
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Indications and timing ogof the infertent evaluation.	-
Table (2):	Infertility evaluation history	25
Table (3):	Descriptive statistics for the whole st population: Numerical variables	•
Table (4):	Descriptive statistics for the whole st population: Categorical variables	•
Table (5):	Relation between biochemical pregna and categorical variables	-
Table (6):	Relation between biochemical pregna and numerical variables	
Table (7):	Results of receiver-operate characteristic (ROC) curve analysis prediction of biochemical pregnancy us various 3D power Doppler US parameters.	for sing
Table (8):	Relation between clinical pregnancy categorical variables	
Table (9):	Relation between clinical pregnancy numerical variables	
Table (10):	Results of receiver-operate characteristic (ROC) curve analysis prediction of clinical pregnancy us various 3D power Doppler US parameters.	for sing
Table (11):	Correlation between 3D power Dop US parameters and outcomes of IVF	<u>.</u>

List of Tables (Cont...)

Table No.	Title	Page No.
Table (12):	Multivariable binary logistic reanalysis for the relation biochemical pregnancy and 3D Doppler US parameters as adjust the effect of potential confounding	between Dower sted for
Table (13):	Multivariable binary logistic reanalysis for the relation between pregnancy and 3D power Dopparameters as adjusted for the potential confounding factors	o clinical pler US effect of

List of Figures

Fig. No.	Title	Page No.
Figure (1): Figure (2):	Conception per cycle in first year Interactive dot plot showing over volume in patients with positive	arian e or
Figure (3):	negative chemical pregnancy Interactive dot plot showing numb follicles in patients with positive negative chemical pregnancy	er of e or
Figure (4):	Interactive dot plot showing follicular volume in patients with posor negative chemical pregnancy	total sitive 80
Figure (5):	Interactive dot plot showing Vapatients with positive or neg chemical pregnancy	ative 81
Figure (6): Figure (7):	Interactive dot plot showing Final patients with positive or neg chemical pregnancy	ative 82
Figure (8):	volume in patients with positive negative chemical pregnancy Receiver-operating characteristic (I	e or 83 ROC)
Figure (9):	curves for prediction of biocher pregnancy using various 3D p Doppler US parameters Interactive dot plot showing ova volume in patients with positive negative chemical pregnancy. An ova	ower 86 arian e or
Figure (10):	volume >75.1 ml could predict clipregnancy with a sensitivity of 89.5% specificity of 50%. Interactive dot plot showing number follicles in patients with positive negative chemical pregnancy	er of e or

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (11):	Interactive dot plot showing	total
	follicular volume in patients with po	sitive
	or negative chemical pregnancy	91
Figure (12):	Interactive dot plot showing V	I in
	patients with positive or neg	gative
	chemical pregnancy	92
Figure (13):	Interactive dot plot showing F	'I in
_	patients with positive or neg	gative
	chemical pregnancy	93
Figure (14):	Interactive dot plot showing endom	etrial
C	volume in patients with positiv	
	negative chemical pregnancy	94
Figure (15):	Receiver-operating characteristic (ROC)
C	curves for prediction of clinical pregr	nancy
	using various 3D power Doppler	· US
	parameters	

List of Picture

Picture No.	Title Page N	V o.
Picture (1):	Ovarian blood flow by doppler	
Picture (2):	Follicular volume by 3D	101
Picture (3):	Ovarian blood flow by Doppler and	
	separate follicle volumes by 3D of the	
	same patient	101
Picture (4):	Automated data by 3D US of follicles	
	measurement in both ovaries	102
Picture (5):	Ovarian volume by 3D US	103
Picture (6):	Automated follicular volume by 3D	103
Picture (7):	Endometrial volume by 3D US	
Picture (8):	Ovarian blood flow by color doppler	
Picture (9):	Automated data by 3D US of follicles	
(- /	measurement in both ovaries in another	
	case.	104
Picture (10):	Ovarian blood flow by 3D color doppler	
1100010 (10)	ultrasound (right ovary)	
Picture (11):	Ovarian blood flow by 3D color doppler	
1100010 (11)	ultrasound (Left ovary)	
Picture (12):	Automated follicular volume by 3D	100
1 leture (12).	ultrasound	105
Picture (13):	Endometrial volume by 3D US	
Picture (14):	Automated data by 3D US of follicles	
	measurement in both ovaries in another	
	case.	TUD

List of Abbreviations

Full term Abb. 2 D..... Two dimentional **3D.....** Three dimentional ACOG...... American College of Obstetricians and *Gynecologists* **ART.....** Assisted reproductive Techniques **ASRM.....** American Society for Reproductive Medicine AUC..... area under ROC curve **AVC.....** Automated volume calculation **COH.....** Controlled ovarion hyperstimulation **E2**..... Estradiol **ESHRE** European society for human reproduction and embryology **ET.....** Embryo transfer EV Endometrial volume FI..... Flow index FSH...... Follicular stimulating hormone FV..... Follicular volume FV..... Follivular volume **GnRH.....** Gonadotrophin releasing hormone **GV**...... Germinal vesicle **HCG.....** Human chorionic gonadotrophin **HSG** Hystrosalpingography ICSI...... Intracytoplasmic sperm inection IUI...... Intrauterine insemination IVF...... In vitro fertilization IVM In vitro maturation **LH.....** Lutenizing hormone **LPD.....** Luteal phase defect MI..... Metaphase I

List of Abbreviations (Cont...)

Abb.	Full term
MII	Metaphase II
<i>MRI</i>	Magnatic resonance iimaging
<i>NF</i>	Number of follicles
<i>NPV</i>	Negative predictive value
<i>OHSS</i>	Ovarian hyperstimulation syndrome
<i>OV</i>	Ovarian volume
<i>PCOS</i>	Polycystic ovary syndrome
<i>PD</i>	Power Doppler
<i>PDUS</i>	Power Doppler ultrasound
<i>PPV</i>	Positive predictive value
<i>RI</i>	Resistance index
ROC	Receiver-operating characteristic
SD	Standard deviation
<i>TESE</i>	Testicular sperm extraction
TVUS	Tranvaginal ultrasound
<i>US</i>	Ultrasound
<i>VI</i>	Vascularization index
VOCAL	Virtual Organ Computer-Aided Analysis
<i>WHO</i>	World Health Organization

Abstract

This study aimed at testing whether 3D U/S measurement of follicular volume, ovarian volume and endometrial volume can predict pregnancy in ICSI cases. The study recruited 136 infertile women attending assisted reproduction unit, and were evaluated by 3D US for total follicular volume and endometrial volume in the day of HCG trigger after long protocol for controlled ovarian hyperstimulation. Embryo graded according to predefined criteria. Embryo transfer was done with ultrasound-guided technique about 3-5 days after oocytes retrieval and one to three embryos will be transferred.- End point: To diagnose pregnancy, by ultrasound finding of gestational sac. Main Outcome Measure(s): Occurrence of clinical pregnancy by the presence of intrauterine gestational sac diagnosed by ultrasound scan. Secondary outcome measures (s): Biochemical pregnancy rate, Number of mature oocytes retrieved, Embryo number and quality.

Keywords: Assisted reproductive Techniques - Automated volume calculation - Human chorionic gonadotrophin - Intrauterine insemination

Introduction

Infertility may describe a woman who is unable to conceive as well as being unable to carry a pregnancy to full term. There are many biological and other causes of infertility, including some that medical intervention can treat (Makar and Toth, 2002).

Estimates from 1997 suggest that worldwide "between three and seven percent of all couples or women have an unresolved problem of infertility. Many more couples, however, experience involuntary childlessness for at least one year: estimates range from 12% to 28%" (Himmel et al., 1997). Twenty to thirty percent of infertility cases are due to male infertility, Twenty to thirty five percent are due to female infertility, and 25-40% are due to combined problems in both parts. In 10-20% of cases, no cause is found (ESHRE, 2014). The most common cause of female infertility is ovulatory problems which generally manifest themselves by sparse or absent menstrual periods (National Health Service, 2014). Male infertility is most commonly due to deficiencies in the semen, and semen quality is used as a surrogate measure of male fecundity.

In vitro fertilization (IVF) refers to a procedure designed to overcome infertility and produce a pregnancy as a direct result of the intervention. In general, the ovaries are stimulated by a combination of fertility medications and then one or more oocyte(s) are aspirated from ovarian follicles. These are fertilized in the laboratory ("in vitro"), after which, one or more embryo(s) are transferred into the uterine cavity. These steps occur over about a two-week interval of time, which is called an IVF cycle (*Paulson et al.*, 2016).

To date, bi-dimensional Ultrasound (2D US) technique has been used to monitor the ovarian response and to study the growing follicles in most of the IVF cycles performed worldwide (*Revelli et al.*, 2014).

US diagnosis of follicle maturity and favorable pregnancy prognosis remain challenges for the gynecologist (*Coulam et al., 1999*). Although follicle maturity is routinely assessed using 2D PD(power Doppler) US, some patients undergoing induced ovulation cycles still cannot achieve pregnancy despite having adequate sonographically controlled cycles (*Engels et al., 2011*).

In the 2D-transvaginal scanning, the two longest diameters of each growing follicle are measured, and the mean follicle diameter is calculated. In the last years, also three-dimensional (3D) ultrasound has been tested as a tool to monitor COH (controlled ovarian hyperstimulation) during IVF, and the first data are now available (*Revelli et al.*, 2014).

Currently 3D-US may be performed by manual measurement of follicle circumference through Virtual Organ

Computer-Aided Analysis (VOCAL) or by an automated US application, the Sonography-based Automated Volume Calculation (SonoAVC) (*Ata and Tulandi*, 2011).

3D US with the VOCAL image processing software allows an accurate calculation with high reproducibility of the volume of any pelvic organ (*Merce et al.*, 2005).

Several reports using 3D US and 3D PDUS to study the ovarian reserve, and the response to ovarian stimulation, have been published with the aim of identifying US markers of ovarian response, and assessing the quality of follicles, oocytes, and embryos. Some studies suggest a relationship between increased follicular and subfollicular vascularization, measured by 2D and 3D US, and a higher production of mature oocytes with higher fertilization rates in intrauterine insemination (IUI) (Bhal et al., 1999).

Moreover, follicular volume measured by 3D US may be an independent factor for IVF and intracytoplasmic sperm injection outcome (Schild et al., 2001).

Conception in IVF programs requires good quality embryos as well as a receptive endometrium (*Friedler et al.*, 1996). Despite the marked advances in assisted reproductive techniques, the implantation rate per embryo has remained very low at 20 % (*Pope et al.*, 2004). While the assessment of embryoquality and proper grading is done in the lab before

transfer, the assessment of endometrial receptivity is more difficult. Transvaginal ultrasonography is an ideal non-invasive method, but lacks specificity (*Sundstrom*, 1998).

The use of 3 D ultrasonography to examine the uterine cavity in detail and reconstruct the images of the uterus surpasses the diagnostic potential of 2D ultrasound (*Lev-Toaff* et al., 2001). Several studies have confirmed a high degree of reproducibility and accuracy of endometrial volume estimation using 3D ultrasound (*Yaman et al.*, 2000).

Revelli et al., in 2014 conducted a critical review of 2D and 3D ultrasound techniques to monitor follicle growth, to answer a question, do they help improving IVF outcome? And they concluded that the study of follicular size by 2D-US is of limited usefulness in helping in the identification of follicles containing the best oocytes and in choosing the best moment to trigger ovulation. Possibly the value of US in this area will be improved by large prospective studies in which automated 3D-US will be used (Revelli et al., 2014).

Also *Singh et al.*, in 2015 conducted a prospective study to compare the predictive value of manual 2D follicular monitoring with that of sonography-based automated volume calculation (SonoAVC) in routine follicular tracking in IVF. Their results showed that, 3D SonoAVC could be a useful adjunct for follicular monitoring, with a significant reduction in time and a good correlation with manual counts. However, they advised for further studies with larger sample *(Singh et al., 2015)*.