

شبكة المعلومات الجامعية







شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم



شبكة المعلومات الجامعية

### جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

#### قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات



يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار في درجة حرارة من ١٥-٥٠ مئوية ورطوبة نسبية من ٢٠-٠٠% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%



## بعض الوثائـــق الإصليــة تالفــة



# بالرسالة صفحات لم ترد بالإصل

# STUDY OF THE ROLE OF TUMOR NECROSIS FACTOR-α, LEPTIN, PLASMINOGEN ACTIVATOR INHIBITOR-1, AND OXIDATIVE STRESS IN THE PATHOPHYSIOLOGY OF OBESITY DIABETES SYNDROME

44 940f

#### **THESIS**

Submitted To the Faculty of Medicine,

University of Alexandria

In Partial Fulfillment of the Requirement

Of the MD Degree

IN BASIC MEDICAL SCIENCES IN

BIOCHEMISTRY

Ву

MONA MOUSTAFA SOBHY EL SAYED MBB Ch, Alexandria MBSC Biochemistry, Alexandria

> FACULTY OF MEDICINE UNIVERSITY OF ALEXANDRIA 2004

#### **SUPERVISORS**

#### Prof. Dr. Mahmoud A. Zahran

Professor of Medical Biochemistry
Faculty of Medicine
University of Alexandria

#### Prof. Dr. Enayat M. Hashem

Professor of Medical Biochemistry
Faculty of Medicine
University of Alexandria

#### Prof. Dr. Mohamed N. Desouky

Professor of Medical Biochemistry
Faculty of Medicine
University of Alexandria

#### Co-Workers

#### Prof. Dr. Yehia M. Ghanem

Professor of Internal Medicine
Faculty of Medicine, University of Alexandria

#### Prof. Dr. Mohamed A. Zeidan

Assistant Professor of Medical Biochemistry
Faculty of Medicine, University of Alexandria

#### First and foremost, thanks to ALLAH

I would like to express my everlasting gratitude and appreciation to *Prof. Dr. Mahmoud A. Zahran*, Professor of Medical Biochemistry, Faculty of Medicine, University of Alexandria, for the stimulating encouragement and supervision I received throughout this work.

I am greatly indebted to *Prof. Dr. Enayat M. Hashem* Professor of Medical Biochemistry, Faculty of Medicine, University of Alexandria, for her useful instructions and sincere cooperation throughout this work.

Also my deepest gratitude and sincere appreciation to *Prof. Dr Mohamed N. Desouky*, Professor of Medical Biochemistry,

Faculty of Medicine, University of Alexandria for his continuous guidance, mentorship, and sincere help during this work.

I am also thankful to *Prof. Dr Yehia M. Ghanem*, Professor of Internal Medicine, Faculty of Medicine, University of Alexandria, for his help and kind interest in this work.

I extend my thanks to *Dr Mouhamed A. Zedan*, Assistant Professor of Medical Biochemistry, Faculty of Medicine, University of Alexandria, for his continuous support and guidance throughout this work.

#### **CONTENTS**

<u>PAGE</u>

| CHAPTER I:                        |
|-----------------------------------|
| INTRODUCTION1                     |
| CHAPTER II:                       |
| AIM OF THE WORK96                 |
| CHAPTER III:                      |
| SUBJECTS97                        |
| CHAPTER IV:                       |
| METHODS98                         |
| CHAPTER V:                        |
| RESULTS129                        |
| CHAPTER VI:                       |
| DISCUSSION178                     |
| CHAPTER VII:                      |
| SUMMARY259                        |
| CHAPTER VIII:                     |
| CONCLUSION AND RECOMMENDATIONS259 |
| CHAPTER VIII:                     |
| REFERENCES216                     |
| PROTOCOL                          |
| ARABIC SUMMARY                    |

#### List Of Figures

#### <u>PAGE</u>

| <u>Introduction</u>                                                |
|--------------------------------------------------------------------|
| Figure1: The effects of leptin on hypothalamic proopiomelanocortin |
| (POMC) and agouti gene related peptide (AGRP) neurons and their    |
| interaction with hypothalamic melanocortin receptors (MC-Rs)       |
|                                                                    |
| Figure 2: Hypothalamic integration of peripheral energy balance    |
| signals9                                                           |
|                                                                    |
| Figure 3: Interaction between the hypothalamus and adipocytes12    |
| * *                                                                |
| Figure 4: Thermogenesis in brown adipose tissue14                  |
|                                                                    |
| Figure 5: Neural regulation of beta-cell insulin release           |
| Figure 6: Regulation of glucose transport by insulin               |
|                                                                    |
| Figure 7: Metabolism of adipose tissue24                           |
|                                                                    |
| Figure 8: Triglyceride storage in high fat and high carbohydrate   |
| diet27                                                             |
| <b></b>                                                            |
| Figure 9: Leptin receptors                                         |
|                                                                    |
| Figure 10: The JAK-STAT mechanism by which the leptin signal is    |
| transduced in the hypothalamus41                                   |
| E' 44 M 11 07 m 1 1                                                |
| Figure 11: Model of LRb signaling42                                |
| Figure 12. I antiqui a maliqui                                     |
| Figure 12: Leptin signaling in pancreatic 3-cells47                |
| Figure 13: TNF-α- initiated signaling cascades58                   |
| Figure 14: proposed mechanism by which TNF-α may act to decrease   |
| adipocyte mass                                                     |
| 01                                                                 |
| Figure 15: The fibrinolytic system                                 |
| gar-e 101 inc normary the system02                                 |
| Figure 16: The insulin recentor                                    |

| <b>Figure 17:</b> Protein-protein interaction domains involved in insulin signal transduction                   |
|-----------------------------------------------------------------------------------------------------------------|
| Figure 18: Regulation of gene expression by insulin                                                             |
| Figure 19 a: Activation of glycogen synthase by insulin80                                                       |
| Figure 19 b: Transmission of signal mediated by PI-3kinase81                                                    |
| Figure 20: Ser/Thr phosphorylation of the insulin receptor substrate (IRS) molecule induces insulin resisance84 |
| Figure 21: Role of insulin in adipose tissue metabolism87                                                       |
| Figure 22: Steps of lipid peroxidation94                                                                        |
| Methods                                                                                                         |
| Figure 23: Standard curve of leptin                                                                             |
| Figure 24: Standard curve of TNF-α                                                                              |
| Figure 25: Standard curve of PAI-1114                                                                           |
| Figure 26: Standard curve of insulin                                                                            |
| Results                                                                                                         |
| Figure 27: Fasting serum glucose                                                                                |
| Figure 28: 2- hours post load glucose                                                                           |
| Figure 29: Fasting serum insulin                                                                                |
| Figure 30: 2- hours post load serum insulin                                                                     |
| <b>Figure 31:</b> HOMA IR                                                                                       |
| Figure 32: Cholesterol                                                                                          |
| Figure 33: Triglycerides                                                                                        |
| Figure 34: High density lipoprotein cholesterol 153                                                             |

| Figure 35: Low density lipoprotein cholesterol | 156 |
|------------------------------------------------|-----|
| Figure 36: Leptin1                             | 59  |
| Figure 37: Tumor necrosis factor-alpha         | 162 |
| Figure 38: Plasminogen activator inhibitor-1   | 165 |
| Figure 39: Plasma malondialdehyde              | .68 |

#### **List Of Tables**

| <u>PAGE</u>                                                                    |
|--------------------------------------------------------------------------------|
| Table 1: WHO and NCEP ATP III Definitions of the Metabolic      Syndrome    71 |
| Table II: Anthropometric measures of the studied                               |
| groups                                                                         |
| Table III: Comparison of Fasting Glucose levels in the studied                 |
| group                                                                          |
| Table IV:.Comparison of 2h-post load Glucose levels in the studied             |
| groups                                                                         |
| Table V: Comparison of Fasting Insulin levels in the studied                   |
| group                                                                          |
| Table VI: Comparison of 2h-post load insulin levels in the studied             |
| group                                                                          |
| Table VII: Comparison of HOMA IR in the studied group143                       |
| Table VIII: Comparison of fasting triglycerides in the studied                 |
| group                                                                          |
| TableIX: Comparison of serum Cholesterol levels in the studied                 |
| group                                                                          |
| TableX: Comparison of serum HDL-cholesterol levels in the studied              |
| group                                                                          |
| Table XI: Comparison of serum LDL-cholesterol levels in the studied            |
| group                                                                          |
| Table XII: Comparison of leptin levels in the studied groups158                |
| Table XIII: Comparison of tumour necrosis factor-α levels in the studied       |
| groups                                                                         |

| Table XIV: Comparison of Plasminogen activator inhibitor-1 levels in  |
|-----------------------------------------------------------------------|
| the studied groups164                                                 |
| Table XV: Comparison of Malondialdehyde levels in the studied         |
| groups                                                                |
| Table XVI: Correlation coefficients of the studied parameters170      |
| Table XVII: Correlation coefficients of the studied parameters in the |
| diabetic patients                                                     |
| Table XVII: Correlation coefficients of the studied parameters in the |
| nondiabetic patients                                                  |

#### **List Of Abbreviations**

aFABP Adipocyte-specific fatty acid binding protein

AgRP Agouti gene-related peptide

ANOVA analysis of variance

aP-2 Fatty acid binding protein

BAT Brown adipose tissue

BMI Body mass index

1

C/EBPa CCAAT/enhancer binding protein-a

CaMK Ca<sup>2+</sup>/calmodulin-dependent protein Kinase

cAMP Cyclic adenosine monophosphate

CART Cocaine-amphetamine- regulated transcript

CCK Cholecystokinin

CGRP Calcitonin gene related peptide

CNF Ciliary neurotropic factor

CPU Central processing unit

CRF Corticotrophin-releasing factor

Db Diabetic

DD Death domain

EDETA Ethylenediamine tetraacetate

ERK Extracellular factor-regulated kinases

FADD Fas-associated death domain protein

FAN Factor associated with neutral SMase

FAS Fatty acid synthase

FLICE FADD-like interleukin 1β converting enzyme

GCSF Granulocyte colony-stimulating factor

GH Growth hormone

GHRH Growth hormone releasing hormone

GLP-1 Glucagon like-peptide-1