

ثبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

في درجة حرارة من 15-20 مئوية ورطوبة نسبية من 20-40 %

To be kept away from dust in dry cool place of 15-25c and relative humidity 20-40 %

ثبكة المعلومات الجامعية

EARTHQUAKE ANALYSIS OF R.C. CHIMNEYS ON RIGID AND FLEXIBLE SOIL

A Thesis Submitted for the Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE In STRUCTURAL ENGINEERING

By

ISLAM MOHAMED HELMI EZZ EL-ARAB

Demonstrator, Faculty of Engineering, Tanta University B.Sc. structural Engineering Dept., Tanta University, 1998

Under the Supervision of

Min KESS Prof. Dr. MOHAMED A. KASSEM

Professor of Structural Analysis Faculty of Engineering Tanta University

Assoc. Prof. Dr. SAHER R. EL-KHORIBY

Assoc. Prof. Structural Engineering Department Faculty of Engineering Tanta University

Dr. FAHMY ABD EL-FTTAH ZAHER

Assi. Pro Structural Engineering Department Faculty of Engineering

Tanta University

EARTHQUAKE ANALYSIS OF R.C. CHIMNEYS ON RIGID AND FLEXIBLE SOIL

A Thesis Submitted for the Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE In STRUCTURAL ENGINEERING

By

ISLAM MOHAMED HELMI EZZ EL-ARAB

Demonstrator, Faculty of Engineering, Tanta University B.Sc. Structural Engineering, Tanta University, 1998

Approved by the Advising and Examining Committee:

Prof. Dr. MOHAMED AHMED KASSEM, Advisor (Tanta University)

Assoc. Prof. Dr. SAHER RAAFT EL-KHORIBY, Advisor (Tanta University)

Dr. FAHMY ABD EL-FTTAH ZAHER, Advisor (Tanta University)

Prof.Dr. SALAH EL-DIN EL-METWALLY, Examiner (Mansoura University) S. D. heta all

Prof. Dr. EL-SAID AMIEN MSHALY, Examiner (Alexandria University) Sayes Markely

" و ما أوتيتم من العلم إلا قليلا "

صدق الله العظيم

To my father and mother

ACKNOWLEDGMENTS

First and foremost, price and thanks be to be Almighty **ALLAH**, the most Gracious, the most merciful and peace is upon his prophet.

Acknowledgment is due to Faculty of Engineering, Tanta University and to my advisors Prof. Dr. Mohamed A. Kassem and Dr. Fahmy A. zaher. Their invaluable guidance, support and encouragement through all stages of this study are highly appreciated. Special thanks with deep respect are to Asso. Prof. Dr. Saher R. EL-Khoriby, who not only proved to be the source of inspiration to me but also an ever flowing stream of encouragement and able guidance.

I would like also to thank Prof. Dr. salah EL-Metwally for his valuable suggestions and advice during this study.

Also, greet thanks for the cooperation and help offered by The Structural Engineering Department Staff have, who helped me to complete the research in time.

I would like also to express my deep thanks to my father and my mother for their support through the course of this research.

Lastly but not last thanks are to those who directly or indirectly participated in completing this thesis.

ABSTRACT

Because of the tallness and slenderness of chimney structure, it is strongly affected by earthquakes. In analyzing of R.C. chimneys subjected to such type of loading, the ACI, I.S., and other specifications provide two procedures for obtaining the equivalent effect of earthquake on structures such as chimneys. One of these, is the equivalent static lateral force method, which is based on the fundamental period of vibration. Other, is the dynamic response spectrum method, which is mainly dependent on the dynamic characteristics of the chimney.

To analyze any chimney with any dimensions by the response spectrum method, it is required first to obtain the chimney model characteristics, which in turn requires constructing mathematical model and performing computer analysis for each chimney. As this procedure consumes time and effort, this study aims to search about simple and exact formulae for quick calculation of chimney as function of its geometrical and material properties. In this study the obtained simple formulae predicting preciously the chimney base moment, base shear, and top lateral displacement due to EL-Centro-1940 Earthquake ground motion.

On other hand, the effect of soil-structure interaction has been considered in this study, as well as linear and nonlinear analysis is performed to have actual and optimum stress due to the effect of major earthquakes.

Also, a parametric study has been presented to show the influence of chimney these parameters on the dynamic response of R.C. chimney on rigid and flexible soil media.

Finally, the simple equivalent estimates has been obtained for the effect of soil flexibility on natural frequencies, straining actions at the base, and top lateral displacement for any chimney. Which, save time and effort with highly accurate results.

List of Contents

Subject	Page
Acknowledgment	
Abstract	i
List of Contents	ii
Notations	vi
List of Tables	vii
List of Figures	viii
Chapter (1): Introduction	
1.1 Introduction and Definition of the Problem	1
	2
1.2 Objectives of Present Study	3
1.3 Thesis Organization	3
Chapter (2): Review of Literature on R.C. Chimneys and	
Soil-Structure Interaction	
2.1 Introduction	5
2.2 Literature Review For the Dynamic Analysis of R.C.	J
Chimneys on Rigid Media	5
2.3 Literature Review For the Soil-Structure Interaction	7
2.3.1 Effect of Soil-Structure Interaction	7
	9
2.3.2 Literature Review For the Soil Modeling	11
2.3.2.1 Finite Element Approach	
2.3.2.2 Elastic half-Space Approach	11
2.3.2.3 Equivalent Static Spring Approach	12
2.4 Impedance Functions	13
2.4.1 Impedance Functions for Shallow	10
Foundation	13
2.4.2 Impedance Functions for Deep	
Foundation	14
2.4.3 Frequency - Independent Dynamic Soil	
Impedance	14
2.4.4 Frequency - Dependent Dynamic Soil	
Impedance	16
2.5 Method of Analysis for Soil-Structure Interaction Problems.	18
2.5.1 Simplified Substructure Method	20
2.5.2 General Substructure Method	21
2.6 Historical Review	22
2.6.1 Types of Chimneys	22
2.6.2 Height	22
2.6.3 Number of Flues	23
2.6.4 Reinforced Concrete as a Construction Material	24

	2.6.5 Parts of a Chimney	24
	2.6.5.1 Foundation	24
	2.6.5.2 Outer Column	25
	2.6.5.3 Liners	25
	2.6.6 R.C. Chimneys Configuration	25
	2.6.7 Loads	
	2.6.7.1 Earthquake Loading	26
	2.6.7.2 Seismic Excitation	26
	2.7 Concepts of Dynamic Analysis of Chimneys	26 27
Cha		
Спа	pter (3): System Idealization and Equations of Motion	
	3.1 Introduction	32
	3.2 Idealization	32
	3.3 Assumption and Notations	33
	3.4 Structure Subsystem Idealization	35
	3.4.1 Beam Element Modeling	35
	3.4.1.1 Stiffness Matrix	35
	3.4.1.2 Mass Matrix	36
	3.4.2 Solid Element Modeling	38
	3.4.2.1 Stiffness Matrix	38
	3.4.2.2 Mass Matrix	39
	3.5 Soil Subsystem Idealization	40
	3.5.1 Frequency-Independent Soil Impedance	40
	3.6 Equation of Motion	41
	3.6.1 Equations of Motion on Rigid Foundation	41
	3.6.2 Equation of Motion on Flexible Foundation	43
	3.7 Linear and Nonlinear Finite Element Scheme	45
	3.8 Structural Nonlinearities	46
	3.8.1 Geometrical Nonlinearities	46
	3.8.2 Material Nonlinearities	46
	3.9 Material Models	47
•	3.9.1 Drucker - prager Elastic - Perfectly Plastic	7/
	Model	48
	3.10 Analysis Procedure	48
	3.10.1 Incremental Force Application	49
	3.10.2 Newton-Raphson Iteration	49
	3.10.3 Displacement Convergence	50
	3.11 Computer Analysis	51
	3.11.1 Modeling Technique and Input File For	31
	Program-(I)	<i>5</i> 1
	3.11.2 Computer Output	51 61
	3.11.3 Computer Results	71
	I	/ 1

Chapter (4): Free Vibration Analysis of R.C. Chimneys

4.1 Introduction	7.
4.2 Mathematical Model	74
4.3 The Comparative Study	80
4.4 Parametric Study on Rigid Soil	8
4.4.1 Effect of Chimney's Height (H)	8
4.4.2 Effect of Top to Bottom Mean	o
Diameters Ratio (D ₁ /D ₂)	8
4.4.3 Effect of Top to Bottom Mean	C
Thickness Ratio (t_1/t_2)	9
4.5 Effect of Soil Flexibility on Modal Characteristics	9
4.5.1 Natural Periods for Flexible Base Chimneys	9
4.5.2 Flexible Base Periods By Simple Formulae	9
4.6 Parametric Study on Flexible Soil	10
4.6.1 Effect of Chimney's Height (H)	10
4.6.2 Effect of Top to Bottom Mean	10
Diameters Ratio (D ₁ /D ₂)	11
4.6.3 Effect of Top to Bottom Mean Thickness	11
Ratio (t_1/t_2)	11
(4), 42)	11
Chapter (5): Earthquake Ground Motion Analysis	
(1) = 111 quality of our and 1/10tion 7 that you	
5.1 Introduction	12
5.2 Type of Earthquake Excitation	120
5.3 Earthquake Analysis	12
5.4 Achieved formulae of Earthquake Ground Motion	12
Analysis	132
5.4.1 Rigid Soil	13
5.4.2 Medium Soil	13.
5.4.3 Weak Soil	134
5.5 Parametric Study on Rigid Soil	140
5.5.1 Effect of Chimney's Height(H)	140
5.5.2 Effect of Top to Bottom Mean	11
Diameters Ratio (D_1/D_2)	143
5.5.3 Effect of Top to Bottom Mean	λТ,
Thickness Ratio (t ₁ /t ₂)	14:
5.6 Parametric Study on Flexible Soil	14
5.6.1 Effect of Chimney's Height (H)	147
5.6.2 Effect of Top to Bottom Mean	14
Diameters Ratio (D_1/D_2)	151
5.6.3 Effect of Top to Bottom Mean	152
Thickness Ratio (t ₁ /t ₂)	
THICKIESS IXALIO (13/17)	152

Chapter (6): Conclusions and Recommendations

6.1 Summary Conclusions	
6.2 Recommendations	
6.3 Scope of The Future Study	
References	
Appendix (A)	
Appendix (B)	
Arabic Summary	