COMPARATIVE STUDY BETWEEN DIABETIC AND NON-DIABETIC RETINAL DISORDERS IN PREVALENT HAEMODIALYSIS PATIENTS

Thesis

Submitted for Partial Fulfillment of Master Degree in Internal Medicine

By

Maghawry Mohamed Maghawry M.B.B.CH

Under supervision of

Prof.Dr.Howayda Abd El-Hamid El-Shinnawy

Prof of Internal Medicine and Nephrology Faculty of Medicine, Ain Shams University

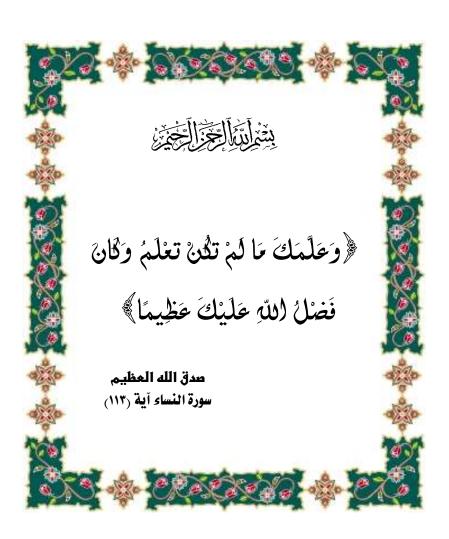
Dr. Sahar Mahmoud Shawky

Assistant Prof of Internal Medicine and Nephrology Faculty of Medicine, Ain Shams University

Dr. Ahmed Mohamed Habib

Lecturer of Opthalmology Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2017


First thanks to **ALLAH** to whom I relate any success in achieving any work in my life.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Dr. Howayda Abd El-Hamid El-Shinnawy**, Prof of Internal Medicine and Nephrology Faculty of Medicine, Ain Shams University for her meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to **Dr. Sahar Mahmoud**Shawky, Assistant Prof of Internal Medicine and
Nephrology Faculty of Medicine, Ain Shams University for
her sincere efforts, fruitful encouragement.

I am deeply thankful to **Dr.** Ahmed Mohamed **Wabib**, Lecturer of Opthalmology Faculty of Medicine, Ain Shams University for his great help, outstanding support, active participation and guidance.

Maghawry Mohamed Maghawry

Tist of Contents

Title	Page No.
List of Tables	5
List of Figures	7
List of Abbreviations	9
Introduction	1
Aim of the Work	3
Review of Literature	
Chronic Kidney Disease	4
Complications of Diabetes	36
 Relation Between Hemodialysis and Eye 	Problems 70
Patients and Methods	83
Results	87
Discussion	109
Summary and Conclusion	119
Recommendations	127
References	128
Arabic Summary	

Tist of Tables

Table No.	Title Page N	V 0.
7 11 (4)		
Table (1):	Causes of chronic kidney disease.	
Table (2):	Risk factors for chronic kidney disease.	6
Table (3):	National Kidney Foundation kidney Disease	0
T-1-1- (4).	staging system for CKD.	8
Table (4):	Initial approach to low or inadequate	20
Toble (5).	delivered hemodialysis *	
Table (5): Table (6):	Pathogenesis of DNStages of diabetic nephropathy	
Table (7):	Clinical and Demographic data.	
Table (8):	Comparison between the two groups as regard	01
Table (6):	etiology of ESRD:	88
Table (9):	Comparison between the two groups as regard	
	hemodialysis related parameters	89
Table (10):	Comparison between the two groups as regard	
	history of IOC surgery.	91
Table (11):	Comparison between the two groups as regard	
	renal function, dialysis adequacy, and CKD-	
	MBD parameters	91
Table (12):	Comparison between the two groups as	
	regards lipid profile.	92
Table (13):	Comparison between the two groups as	
	regards CBC, INR, and Iron profile	92
Table (14):	Comparison between the two groups as	
	regards liver enzymes, and CRP.	93
Table (15):	Comparison between the two groups as regard	
	DM control indices.	93
Table (16):	Comparison between the two groups as regard	
	incidence of retinopathy.	94
Table (17):	Comparison between the two groups as regard	
-11 (10)	fundus examination.	
Table (18):	Demographic data of all studied patients (80)	97
Table (19):	Past history correlation between prevalence of	0.0
	retinopathy and past history.	98

Tist of Tables cont...

Table No.	Title	Page	No.
Table (20):	Anthropometric and clinical measures		101
Table (21):	Hemodialysis regimen.		101
	Dialysis and nutrition adequacy.		
	CKD-MBD parameters		
Table (24):	Lipid profile.		103
Table (25):	Laboratory profile.		104
Table (26):	Iron Profile.		104
Table (27):	DM control parameters.		105
Table (28):	Multivariate analysis of predicto	rs of	f
	retinopathy in all patients.		107
Table (29):	Multivariate analysis of predicto		
	retinopathy in diabetic patients only		108

List of Figures

Fig. No.	Title Pag	e No.
Figure (1):	Possible sequence of hemodynamic events leading to onset of diabetic	
D' (0)	glomerulopathy	
Figure (2):	Schematic representation of mechanisms	
	whereby stretch may induce extracellular	
	matrix (ECM); vascular endothelial	
	growth factor (VEGF) deposition in	
E: (2).	mesangial cells	
Figure (3):	Sorbitol reductase pathwayactivation in	
E: (4).	Mahariana of declinidania in dishati	
Figure (4):	Mechanisms of dyslipidemia in diabetic nephropathy.	
Figure (5):	Ocular surface changes after	
rigure (5):	hemodialysis	
Figure (6):	Showing ESRD etiology of studied patients.	
Figure (7):	Comparison between the two groups as	
rigure (7).	regard fundus examination	
Figure (8):	Effect of age on prevalence of retinopathy	
rigure (o).	in studied patients	
Figure (9):	Effect of gender on prevelance of	
118410 (0)	retinopathy in studied patients.	
Figure (10):	Frequency of D.M in patients with	
g 0 (10)	retinopathy.	
Figure (11):	Correlation between D.M duration and	
G , ,	prevalence of retinopathy.	
Figure (12):	Frequency of IHD in patients with	
	retinopathy.	
Figure (13):	Frequency of IOC surgery in patients with	1
	retinopathy.	
Figure (14):	There is significant relation between	
-	increased urea PRE and increased	
	prevalence of retinopathy (p-value 0.007)	102

Tist of Figures cont...

Fig. No.		Title			Page	No.
Figure (15):		between e of retinon				105
Figure (16):	Relation	-	2hPP	values	and	
Figure (17):	Relation	-	HBA1c	values	and	

Tist of Abbreviations

Abb.	Full term	
ACEI	Angiotensin converting enzyme inhibitor	
	Albumin excretion rate	
AGEs	Advanced glycation end products	
	Acute kidney injury	
	Apo protein E	
	Atherosclerosis Risk in Communities	
	Biocompatible membrane	
	Best corrected visual acuity	
	Chronic kidney disease	
	Chronic renal failure	
CTGF	Connective tissue growth factor	
	Cardiovascular disease	
DCCT	Diabetic Control and Complications Trial	
	Diabetic kidney disease	
	Diabetic retinopathy	
	Extracellular matrix	
ESKD	End-Stage kidney disease	
GFR	Glomerular filtration rate	
HD	Hemodialysis	
HDLC	High density lipoprotein cholesterol	
HIT	Heparin induced thrombo-cytopenia	
HITTS	Heparin induced thrombocytopenia	and
	thrombotic syndrome	
HL	Hepatic lipase	
ICAM-1	Intercellular adhesion molecule-1	
IDDM	Insulin-dependent diabetes mellitus	
IGF	Insulin like growth factor	
IL-1	Interleukin-1	
IL-6	Interleukin-6	
	Intraocular pressure	
	Intraretinal microvascular abnormalities	
K/DOQI	K/Dialysis Outcomes Quality Initiative	
LDL	Low-density lipoprotein	

Tist of Abbreviations cont...

Abb.	Full term
IDIC	. Low-density lipoprotein cholesterol
	. Lipoprotein lipase
	. Matrix metalloproteinase
	. Matrix metanoprotemase . Methyltetrahydrofolate reductase gene
	Nicotinamide adenine dinucleotide phosphate
	. Neovascularization of the disc
	. Neovascularization of the disc
	. Optic coherence tomography
	. Polyacrylonitrile
	. Proliferative diabetic retinopathy
	Protein kinase C
	. Polymethylmethacrylate
	. Percent reduction in urea
	. Renal blood flow
-	Reactive oxygen species
	. Thrombim-activation fibrinolysis inhibitor
	. Total cell volume
	Transforming growth factor-β
•	Transforming growth factor
	Transforming growth factor-3
TG-plasma	
	. Urea Kinetic Modeling
	. urea reduction ratio
VA	
	Vascular cell adhesion molecule-1
	. Vascular endothelial
	. Vascular endothelial growth factor
	. Very low density lipoprotein cholesterol

Abstract

In our study we found that most of the patients received three hemodialysis sessions /week each lasting four hours and the mean of urea reduction ratio was (mean $68.1\% \pm 11.8$) in diabetic group and (mean $63.3\% \pm 10.0$) in non diabetic group. National kidney Foundation (2006), recommended that the minimally adequate dose of given three hemodialysis times per week for treatment. The minimum dose is urea reduction ratio of 65%.

In our study the mean hemoglobin level was (10.8 \pm 0.9) gm/dl in diabetic group, and (10.5 \pm 1.1) gm/dl in non diabetic group, this level below the recommended level in the last recommendation.

Keywords: Renal blood flow- Reactive oxygen species- Thrombim-activation fibrinolysis inhibitor- Urea Kinetic Modeling - urea reduction ratio- Vascular access- Vascular endothelial

Introduction

nd-Stage kidney disease (ESKD) is highly prevalent globally. It has become a major public health problem and is associated with considerable co-morbidity and mortality (Roaeid and Kaplan, 2010).

The patient with ESRD is at risk for development of eye disease. This risk is related to the comorbid conditions that are often seen in ESRD patients as well as the unique effects of hemodialysis and the uremic state leading to changes in the conjunctiva, cornea, retina and macula (*Gaia and Mitchell*, 2012).

The most common ocular complaints in ESRD patients include red, irritated eyes, and may be associated with elevations in the calcium-phosphate product. In those patients with chronically elevated calcium-phosphate product, band keratopathy may result. Other eye conditions include macular edema, ischemic optic neuropathy, elevated intra ocular pressure, retinal detachment and retinal hemorrhage (*Gaia and Mitchell*, 2012).

Hemodialysis patients, especially the elderly, have visual acuity (VA) levels much lower than their age-matched counterparts. Decreased visual acuity is associated with reduction in quality of life, interference with daily activities, increased sudden fall, and difficulties in performing personal tasks (*Theofilou*, 2011).

______ 1 _____

During hemodialysis, numerous metabolic parameters including blood urea, sodium, potassium, and sugar will be changed, these changes result in osmotic changes in blood and extracellular fluids, including aqueous and vitreous. Any changes in osmotic pressure of these fluids could affect the

refractive status or visual acuity in hemodialysis patients

(Mitchel et al., 2011).

Retinal abnormalities that occur in ESRD include microvascular and diabetic retinopathy, macular degeneration, hemorrhage and calcification. Retinal hemorrhage occurs in renal failure as a feature of the moderate and severe forms of microvascular and diabetic retinopathy and of macular degeneration, and is exaggerated by the bleeding tendency in uremia. Retinal microvascular abnormalities are common because hypertension, renovascular disease and diabetes account for more than half of all patients with renal failure (*Deva et al., 2011*).

In patients with End-stage renal disease, the microvasculature can be visualized directly in the retina. Focal abnormalities include localized vessel narrowing, arteriovenous nicking, hemorrhage, microaneurysms, and soft exudates (*Qilun et al., 2011*).

2

AIM OF THE WORK

- To compare between diabetic and non-diabetic retinal disorders in prevalent hemodialysis patients.
- To study the correlation of retinal changes to the adequacy of hemodialysis.

Chapter One

CHRONIC KIDNEY DISEASE

Chronic kidney disease (CKD) is a devastating disease with clinical, economic and ethical dimensions, and is a recognized major public health problem. CKD is defined as kidney damage or glomerular filtration rate (GFR) less than 60 ml/min/1.73m² for 3 months or more, regardless of cause (*Levey et al.*, 2005).

The major outcomes of CKD, regardless of cause include progression to ESRD, complications of decreased kidney function, and cardiovascular disease (CVD). Increasing evidence indicates that some of these adverse outcomes can be prevented or delayed by early detection, and treatment (*Remuzzi et al.*, 2002).

CKD is the preferred term because another widely used one, chronic renal failure or insufficiency, is not as easily identifiable by patients as a disorder that affects the kidney. In addition, chronic renal failure (CRF) suggests that the kidneys have lost all of their function, whereas CKD covers the spectrum of clinical problems beginning with abnormalities detectable only by laboratory testing to a late stage, labeled uremia. When the kidney fails to perform most of its function, the clinical state is labeled end-stage renal disease ESRD, and dialysis or transplantation is required to sustain life (*Mitch*, 2007).

ESRD is defined as either GFR less than 15mL/min per 1.73 m², which is accompanied in most cases by signs and

4