CITRUS WASTES AS A SOURCE OF FUNCTIONAL INGREDIENTS IN MEAT PRODUCTS

By

AHMED ABD EL-GHAFAR MUHAMMAD HAMED

B.Sc. Agric. Sci. (Food Technology), Cairo University, 2011

A Thesis Submitted in Partial Fulfillment
Of
The Requirement for the Degree of

MASTER OF SCIENCE in

Agricultural Sciences (Food Science and Technology)

Department of Food Science Faculty of Agriculture Ain Shams University

Approval Sheet

CITRUS WASTES AS A SOURCE OF FUNCTIONAL INGREDIENTS IN MEAT PRODUCTS

By

AHMED ABD EL-GHAFAR MUHAMMAD HAMED

B.Sc. Agric. Sci. (Food Technology), Cairo University, 2011

This thesis for M.Sc degree has been approved by:

Dr. Zakaria Ahmed Mohamed Saleh Prof. Emeritus of Food Science and Technology, Faculty of Agriculture, Suez Canal University Dr. Yasser Fikry Kishk Prof. of Food Science and Technology, Faculty of Agriculture, Ain Shams University Dr. Abdel Fattah Abdel Karim Abdel Fattah Associate Prof. of Food Science and Technology, Faculty of Agriculture, Ain Shams University

Prof. Emeritus of Food Science and Technology, Faculty of

Date of Examination: 8/4/2017

Agriculture, Ain Shams University

Dr. Ibrahim Mohamed Hassan

CITRUS WASTES AS A SOURCE OF FUNCTIONAL INGREDIENTS IN MEAT PRODUCTS

By

AHMED ABD EL-GHAFAR MUHAMMAD HAMED

B.Sc. Agric. Sci. (Food Technology), Cairo University, 2011

Under the supervision of

Dr. Ibrahim Mohamed Hassan

Prof. Emeritus of Food Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University, (Principal Supervisor)

Dr. Abdel Fattah Abdel Karim Abdel Fattah

Associate Prof. of Food Science and Technology, Faculty of Agriculture, Ain Shams University

Dr. Hayam Mohamed Ahmed Ibrahim

Prof. Researcher emeritus of Food Science and Technology, Department of Food Technology, National Research Center

ABSTRACT

Ahmed Abd El-Ghafar Muhammad Hamed. "Citrus Wastes as a Source of Functional Ingredients in Meat Products". Unpublished M.Sc. Thesis, Department of Food Science, Faculty of Agriculture, Ain Shams University, 2017

Citrus fruit peel by-products can be promising source of functional compounds and dietary fiber. Lemon and orange peels (LP and OP) considered the primary citrus by-products and discarded as wastes. Reusing these wastes in a suitable form may be of considerable economic benefit to food processors.

The aim of this work was to study the potential use of orange and lemon peels as natural sources of functional ingredients e.g phenolic compounds and dietary fiber in meat products. Physico-chemical and functional properties as well as phenolic acids profiles of raw and dried peels were evaluated. Ethanolic and methanolic extracts of the fresh and dried peels (using microwave or air oven drying methods) were used to evaluate their phytochemical contents, antioxidant and antimicrobial activities. Proximate chemical composition, vitamin C, phenolic, flavonoids contents, also radical scavenging activities (DPPH), Trolox equivalent antiradical capacity (TEAC) and β-carotene assays, as well ferric reducing antioxidant power (FRAP) and Hydroxyl radical (OH⁺) scavenging activity were determined.

In order to improve the functional value of meat product, application of these citrus peels at the levels 1 and 2% in the suggested ground beef meat patties formulae were carried out. Quality and shelf-life properties of beef patties as affected by adding citrus peels during refrigeration at 4°C for 15 days and freezing at -20°C for 30 days storage were studied.

Regarding to the results of physico-chemical analyses, it was noticed that fresh LP had higher %s of moisture, protein, ether extract, fiber and ash than OP. After drying, lemon peels still have had more crude protein, total fiber and ash contents except ether extract compared to

orange peel. The ash and fiber contents of lemon peels had significantly more %s compared to orange peels treated by microwave or air oven drying methods. Color investigation showed high lightness value for dried orange and lemon peels by air oven, high values of redness and yellowness color parameters were realized for microwave dried orange and lemon peels compared to control. Dried OPs by air oven had the highest water and oil holding capacities. However dried lemon peels by the same device were noticed to be higher in water holding capacity than control sample. Total dietary fiber content in fresh orange peel was of less % than lemon peels. Dried LPs by microwave and air oven was higher in total dietary fiber than that in orange peels. Fresh LPs contain more insoluble dietary fiber than OPs. After drying by the two mentioned methods, microwave dried lemon and orange peels still have more insoluble dietary fiber than that of air oven dried ones. Furthermore fresh and dried orange peel samples contain more soluble dietary fiber than the lemon peels.

The results of antioxidants analysis (phenols) and antioxidant activity conducted on successive extracts showed that the microwave drying did significantly affect these parameters in orange or lemon peels either methanolic or ethanolic extracts. An opposite pattern was noticed i.e. methanolic or ethanolic extracts of dried orange and lemon peels by air oven contained more flavonoids than microwave drying. The HPLC results revealed that naringin and hisperdin were the predominant phenolic acids in all tested samples with different concentrations.

Ethanolic extract of dried lemon peels by microwave inhibited *S. aureus*, *L. monocytogenes*, *B. subtilis*, *P. aeuroginosa*, *S. typhi*, and *E. coli* bacteria compared to methanolic extract except *Aspergillus flavus* and *C. albicans* which showed no susceptibility to this extracts compared to ampicillin, antifungal agent amphotericin B and control. The methanolic extract of dried lemon peels with air oven showed low antimicrobial activity which inhibited only four bacteria, while the ethanolic extract was

more effective than that of methanolic extract in inhibition of six bacteria strains. Dried orange peel by microwave and extracted with ethanol inhibited *B. subtilis, E. coli, P. aeuroginosa, L. monocytogenes* and *C. albicans* compared to methanolic extract which inhibited *B. subtilis, E. coli, P. aeuroginosa,* and *C. albicans*.

Addition of 1 or 2% OP and LP to beef patties caused a reduction in moisture, thiobarbituric acid reactive substances, total volatile basic nitrogen,microbial count. Changes of pH value, shrinkage % and thawing values, somewhat increase in fat, ash, protein %s, cooking yield, moisture retention, fat retention, water and oil holding capacity were noticed. In addition the levels of OP or LP (1 or 2%) affected the color, radical scavenging activity, texture and sensory properties relative to control.

Key words: Citrus by-products/waste, Lemon peels, Orange peels, Physico-Chemical compositions, Antioxidant properties, Phenolic compounds, Beef patties, Antimicrobial activity.

ACKNOWLEDGMENT

All praises are due to God, who blessed me with those kind professors and colleagues, who gave me the support to produce this thesis.

I would like to express my deep and sincere gratitude to my supervisor **Prof. Dr. Ibrahim Mohamed Hassan**, Prof. Emeritus of Food Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University, for his supervision, his guidance, his patience, for his incredible and valuable assistance, continuous encouragement, valuable advice and constructive comments.

I am greatly indebted to **Prof. Dr. Hayam Mohamed Ahmed Ibrahim,** Prof. Researcher emeritus of Food Science and Technology,
Department of Food Technology, National Research Center, for this
study, her continuous supervision and for the extremely good research
and aid facilities. She supported me with constructive supervision,
valuable discussion and criticism throughout the course of this Thesis.

Deep thanks and appreciation to **Dr. Abdel Fattah A. Abdel Fattah,** Associate Prof. of Food Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University; for his supervision, his advice and meticulous observation throughout the work.

Many thanks to **Dr. Marwa Hanafy Mahmoud,** Researcher of Food Science and Technology, Department of Food Technology, National Research Center, for her in-part helping me in training and her advice.

Also, I would like to express many thanks for **Prof. Dr. Ferial M. Abu-Salem,** Prof. Emeritus of Food Science and Technology,
Department of Food Technology, National Research Center for her interest in the subject of this work.

I gratefully acknowledged the research and technical staff of the Central Lab of Food Technology, National Research Centre for their assistance. Grateful appreciation is also extended to **all staff members of Food Technology lab**, Food Technology Department, National Research

Center, Dokki, Egypt and **all Staff members** of the Department of Food Science, Faculty of Agriculture, Ain Shams University for their support and personal encouragement, valuable help in this work.

Words fail me to express my appreciation to **my parents** for their support and help me through my life and my study, as well as to **my dear brother** and **sisters** for their support in all my life.

CONTENTS

	Page
LIST OF TABLES	Vi
LIST OF FIGURES	IX
LIST OF ABBREVIATIONS	XI
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	5
2.1. Food wastes (Food by-products)	5
2.2. Citrus fruits and their by-products	7
2.2.1. Citrus	7
2.2.1.1. Functional ingredients of citrus	8
2.2.2. Citrus by-products	8
2.2.3. Citrus peels	10
2.2.3.1. Functional compounds of citrus peels	11
2.3. Bioactive compounds of citrus and citrus by-products	13
2.3.1. Phenolic compounds of citrus and their by- products	15
2.3.2. Flavonoids of citrus and their by-products	16
2.4. Antioxidant activity of citrus and their by-product	
extracts	19
2.5. Antimicrobial activity of citrus and their by-product	
extracts	21
2.6. Dietary Fiber of citrus and their by-products	23
2.7. Citrus by-products and their application in meat	
products	28
2.7.1. Meat and meat products	28
2.7.2. Meat & meat products and spoilage	28
2.7.3. Relationship between diet, food ingredients and health	31
2.7.4. Functional foods.	32
2.7.5. Functional meat products	32
2.7.6. Some Application of using citrus by products in meat	
products	35
3. MATERIALS AND METHODS	38

3.1. MATERIALS	38
3.1.1. Citrus fruits	38
3.1.2. Chemicals	38
3.2. METHODS	38
3.2.1. Preparation of lemon and orange peels sample	38
3.2.2. Drying methods	38
3.2.2.1. Air oven	38
3.2.2.2. Microwave oven	39
3.2.3. Bioactive compounds extraction	39
3.2.3.1. Ethanol extraction	39
3.2.3.2. Methanol extraction	40
3.2.4. Analytical methods	40
3.2.4.1. Proximate chemical composition	40
3.2.4.2. Determination of vitamin C (total ascorbic acid)	40
3.2.4.3. Phenolic analysis	40
3.2.4.3.1. Determination of total phenolic content	40
3.2.4.3.2. Determination of total flavonoids content	41
3.2.4.3.3. Analysis of extracts by HPLC	41
3.2.4.3.4. Antioxidant activity assays	42
3.2.4.3.4.1. Determination of radical scavenging activity	42
3.2.4.3.4.2. Determination of ABTS radical scavenging	
activity	42
3.2.4.3.4.3. β-carotene bleaching test	43
3.2.4.3.4.4. Ferric reducing power (FRAP) assay	44
3.2.4.3.4.5. Hydroxyl radical (OH) scavenging activity	44
3.2.4.4. Determination of Dietary fiber	44
3.2.4.5. Physical and functional properties	47
3.2.4.5.1. Color measurement	47
3.2.4.5.2. pH determination	47
3.2.4.5.3. Water and oil holding capacities	47
3.2.5. Antimicrobial activity assay	47
3.2.5.1. Media	47
3.2.5.2. Microorganism	48

3.	2.5.3. Antimicrobial assay (disk diffusion assay)
3.	2.5.4. Determination of the minimum inhibitory
	concentration
3.2	6. Application of orange or lemon peels powder in beef
	patties
3.	2.6.1. Material of beef patties.
3.	2.6.2. Preparation of beef patties
3.	2.6.3. Thiobarbituric acid reactive substances (TBARS)
3.	2.6.4. Total volatile basic nitrogen (TVBN)
3.	2.6.5. Microbiological examination
-	3.2.6.5.1 Preparation of medium used for T.P.C
	3.2.6.5.2. Sample preparation and microbial examination
-	3.2.6.5.3. Total plate count (T.P.C)
3.	2.6.6. Physical and Functional properties for beef patties
-	3.2.6.6.1. Texture profile analysis
-	3.2.6.6.2. Cooking characteristics.
-	3.2.6.6.3. Thaw loss
3.	2.6.7. Sensory evaluation of beef patties
3.2	7. Statistical analysis
l. RES	ULTS and DISCUSSION
4.1. C	hemical properties of orange and lemon peels
4.1	1. Proximate chemical composition
4.1	2. Ascorbic acid content
4.1	3. Phenolic analysis
4.	1.3.1. Total phenolic content
4.	1.3.2. Total flavonoids content
4.	1.3.3. Phenolic acids profiles of citrus by-products
4.	1.3.4. Antioxidant properties
	4.1.3.4.1. Radical scavenging activities (DPPH*)
2	4.1.3.4.2. Determination of ABTS radical scavenging activity
2	4.1.3.4.3. β-carotene bleaching Assay
4	4.1.3.4.4. Ferric ions reducing antioxidant power assay

4.1.3.4.5. Hydroxyl radical (OH) scavenging activity	
4.1.4. Dietary fiber content	
4.1.5. Physical and functional properties	
4.1.5.1. Color	
4.1.5.2. Water and oil holding capacities and pH changes	
4.2. Microbiology of citrus peels	
4.2.1. Antimicrobial activity by agar disc diffusion method	
4.2.2. Minimum inhibitory concentration (MIC)	
4.3. Application of citrus peels in beef patties	
4.3.1. Quality and shelf-life of beef patties as affected by	
adding powder of orange and lemon peels during	
refrigerated storage	
4.3.1.1. Proximate chemical composition	
4.3.1.2. Thiobarbituric acid reactive substances (TBARS)	
4.3.1.3. Total volatile basic nitrogen (TVBN)	
4.3.1.4. Radical scavenging activity (DPPH)	
4.3.1.5. Microbial evaluation (Microbial count)	
4.3.1.6. Functional and physical properties	
4.3.1.6.1. Water and oil holding capacities	
4.3.1.6.2. Determination of pH value	
4.3.1.6.3. Instrumental color measurements of beef patties	
4.3.1.6.4. Texture profile analysis	
4.3.1.6.5. Cooking characteristics	
4.3.1.7. Sensory evaluation.	
4.3.2. Quality and shelf-life of beef patties as affected by	
adding of powder of orange and lemon peels during	
frozen storage	-
4.3.2.1. Proximate chemical composition	
4.3.2.2. Thiobarbituric acid reactive substances (TBARS)	
4.3.2.3. Total volatile basic nitrogen (TVBN)	
4.3.2.4. Microbial evaluation (Microbial count)	
4.3.2.5. Functional and physical properties	
4.3.2.5.1. Water and oil holding capacity values	-
4.3.2.5.2. Thawing loss values]

4.3.2.5.3. Texture profile analysis	127
5. SUMMARY AND CONCLUSION	130
6. REFERENCES	144
7. ARABIC SUMMARY	

LIST OF TABLES

No		Page
1	Proximate chemical composition of orange and lemon peels	
	as affected by air oven and microwave drying (db)	55
2	Effect of air oven and microwave drying methods on	
	ascorbic acid content (mg/100g sample db) of orange and	
	lemon peels	57
3	Total phenolics content (mg /100g sample equ. Gallic acid)	
	in methanolic or ethanolic extracts of orange and lemon peels	59
4	Total flavonoids content (mg quercetin /100g sample) in	
	fresh and dried orange and lemon peels extracted by	
	methanol or ethanol (db)	60
5	Phenolic acids profile of orange and lemon peel extracts	
	(μg/100g sample) detected using HPLC	63
6	Radical scavenging activities % of dried orange and lemon	
	peels extracted by methanol or ethanol	69
7	ABTS antiradical capacity (mM Trolox equivalent) of dried	
	orange and lemon peels extracted by methanol or ethanol	71
8	Effect of drying methods on β-carotene (IC ₅₀ mg/ml) of	
	orange and lemon peels extracted by methanol and ethanol	73
9	Ferric reducing power activities μM Trolox eq/100g db of	
	orange and lemon peels extracted by methanol and ethanol	75
10	Hydroxyl radical scavenging activities (OH) of orange and	
	lemon peels extracted by methanol and ethanol	77
11	Effect of some different drying methods on dietary fiber of	
	orange and lemon peels.	78
12	Color attributes of fresh and powder orange and lemon peels.	81
13	Water and oil holding capacities (as g of water or oil held/g	
	sample) and pH changes of orange and lemon peels as	
	affected by air oven and microwave drying methods	83
14	Antimicrobial activity of lemon extracts against bacteria and	

	yeast measured in (mm)
15	Antimicrobial activity of orange extracts against bacteria and
	yeast measured in (mm)
16	Minimum inhibitory concentration ($\mu l/ml$) of ethanolic
	dried orange and lemon peels by microwave
17	Proximate chemical composition of beef patties formulae
	during refrigerated storage at 4±1°C for 15 days (W/W) *
18	TBARS values changes of beef patties sample during
	refrigerated storage at 4±1°C for 15 days
19	Total volatile basic nitrogen (mg N/100g sample) changes of
	beef patties during refrigerated storage at 4±1°C for 15 days
20	Changes radical scavenging activity% values of beef patties
	sample during refrigerated storage at 4±1°C for 15 days
21	Total plate count changes of beef patties sample during
	refrigerated storage at 4±1 °C for 15 days
22	Water and oil holding capacity values changes of beef patties
	sample during refrigerated storage at 4±1 °C for 15 days
23	pH changes of beef patties during refrigerated storage at
	4±1°C for 15 days
24	Instrumental color values of beef patties as affected by
	addition of citrus peel powder during refrigerated storage at
	4±1 °C for 15 days
25	Effect of incorporation of powder orange and lemon peels on
	the textural characteristics of the prepared beef patties during
	refrigerated storage at 4±1 °C for 15 day
26	Cooking characteristic means of the beef patties containing
	powder of orange and lemon peels during refrigerated
	storage at 4±1 °C
27	Sensory evaluation of the beef patties containing powder of
	orange and lemon peels during refrigerated storage at 4 ± 1 °C.
28	Proximate chemical composition (%) of beef patties
	formulated with adding 1 or 2% powdered orange and lemon