Video Assisted Thoracoscopy in Treatment of Empyema In An Adult Population. A Prospective Study

Submitted for the Partial Fulfillment of MD degree in Cardiothoracic Surgery

<u>By</u> Essam Fathy Amin Mohammed

M.B.B.Ch., MS (cardiothoracic surgery)-Ain Shams University

Under Supervision of

Professor Dr. Ahmed Anwar Ahmed Elnory

Professor of cardiothoracic surgery Faculty of Medicine-Ain Shams University

Professor Dr. Hatem Yazeed Sayed Ahmed

Professor of cardiothoracic surgery Faculty of Medicine-Ain Shams University

Professor Dr. Hany Hasan Mohammed Elsayed

Ass. Professor of cardiothoracic surgery Faculty of Medicine-Ain Shams University

Dr. Ahmed Mohammed Mohammed Mostafa

Lecturer of cardiothoracic surgery Faculty of Medicine-Ain Shams University

> Faculty of Medicine Ain Shams University 2016

Video Assisted Thoracoscopy in Treatment of Empyema in An Adult Population. A Prospective Study

Ahmed A El-Nori, MD, HatemYazeed El-Bawab, MD, Hany H Elsayed, MD, Ahmed Mostafa, MD, Essam Fathy, MSc

Essam fathy*, M.B.B.Ch., MS (cardiothoracic surgery)

Department of Cardiovascular and Thoracic Surgery, Ain Shams University Hospitals, Cairo, Egypt *Corresponding author. Department of Cardiovascular and Thoracic Surgery, Ain Shams University Hospitals, Ramses Str. Abbassia, 11588 Cairo, Egypt.Tel:+20-1003110480 E-mail: esamfathy336@gmail.com(essam fathy).

Abstract

Background: Few thoracic conditions present such a considerable challenge as does pleural empyema. The disease is known since Hip- pocrates' time, nonetheless it is still associated with the rising incidence all over the world. Minimally invasive procedures be- come more and more popular in many fields of surgery as well as in patients with pleural empyema. However, video-assisted thoracoscopy cannot replace open surgery in all empyema cases.

Objectives: to determine the outcomes of patients with early empyema stage I and II who underwent VATS washout with or without decortication on short and mid term basis.

Methods: October 2013 till March 2016, 60 patients who underwent VATS washout of early empyema stages I and II. This study was conducted in Ain shams university hospitals and affiliated hospitals.

Results: mean age 40.7 ± 1.8 years, 46 (76.7%) were males and 14(23.3%) were females The cause of empyema was post pneumonic in 31(51.7%) cases and post traumatic infected haemothorax in 29(49.3%) cases, 19 (31.7%) of cases were stage I exudative phase and 41(68.3%) were stage II fibrino-purulent empyema, there was no risk factors in 35 cases, 21 cases were diabetics, 1 case was chronic renal failure patient on regular dialysis and 3 cases were on cytotoxic drugs. Wash out only done in 20 cases (33.3%), Wash out and Decortication in 40(66.7%) cases. Only 17 patients needed ICU admition with mean duration of ICU Stay postoperative was 0.3 ± 0.06 (SEM) days. The mean duration of Hospital Stay was 4.2 ± 0.2 (SEM) days. There was no mortality and no patient suffered from any major morbidity. There was only 3 cases (5%) who needed another open decortications through thoracotomy at 8 and 12 weeks after the VATS procedure, the three patients had been referred late after four weeks from onset of symptoms but were given a trial of thoracoscopic drainage.

Conclusions: Thoracoscopic management of early stages of empyema should be the golden standard of management in surgically fit patients; particularly in the fibroexudative phase of empyema. It is an effective and safe technique that reduces hospital stay and avoids the need for a decortication via a thoracotomy in most cases.

Key words: VATS empyema

سورة طه الآيسه رقم ۱۱۶

First of all, I thank **ALLAH** for blessing this work as a part of his generous help throughout my life.

I would like to acknowledge my deepest gratitude and appreciation to Prof. Dr. Almed Anwar Almed Elnory, Professor of Cardiothoracic Surgery, Faculty of Medicine, Ain Shams University, for his support and encouragement.

I would like to express my sincere gratitude and deepest thanks to Prof. Dr. Haten Yazeed Sayed Afmed, Professor of Cardiothoracic Surgery, Faculty of Medicine, Ain Shams University, for his meticulous supervision, scientific support and judicious guidance throughout this work.

I would like to display my indebtedness to Prof. Dr. Hany Hasan Mohammed Elsayed, Assistant Professor of Cardiothoracic Surgery, Faculty of Medicine, Ain Shams University, for suggesting and planning this work and for his support, faithful advice and meticulous supervision.

A special measure of appreciation is extended for **Dr.**Almed Mohammed Mohammed Mostafa, Lecturer of Cardiothoracic surgery, Ain Shams University. He offered me the utmost care, invaluable advice and unlimited support.

Last but not least, I would like to thank my family for their support.

Essam Fathy

Contents

List of Abbreviations	i
List of Tables	iii
List of Figures	iv
Introduction	1
Aim of the Work	4
Review of Literature	
Anatomy and physiology of the pleura	5
Empyema	14
Video assisted thoracoscopy	32
Patients and Methods	44
Results	53
Discussion	66
Summary	77
Conclusion	80
References	81
Arabic Summary	

List of Abbreviations

BC : Before Christ

CAP : Community-acquired pneumonia

Cap : Capillary

CBC : Complete blood count CHF : Congestive heart failure

Cl- : Chloride

CRP : c-reactive protein

CXR : Chest x-ray

DM : Diabetes mellitusECG : Electrocardiogram

F : Fahrenheit

F : Rate of fluid movement

Fr : French H+ : Hydrogen HCO3- : Bicarb Hr : Hour

HTN : Hypertension

ICU : Intensive care unit

IL-8 : Interleukin 8

K : The filtration coefficient

Kg : Kilogram

LDH : Lactate dehydrogenase

MCP-1 : Monocyte chemotactic protein 1

ml : Milli liter mm : Milli meter Na+ : Sodium

P and π : Hydrostatic and oncotic pressures

respectively

Pl : Pleural space S : Streptococcus

List of Abbreviations (Cont.)

TLC : Total leucocytic count TNF- α : Tumor necrosis factor α

tPA : Tissue plasminogen activator

VATS : Video assisted thoracoscopic surgery VEGF : Vascular endothelial growth factor

 σ : The osmotic reflection coefficient for protein

List of tables

Table	Title	Page
1	Normal composition of pleural fluid	9
2	Parapneumonic effusion classification	24
3	Showing descriptive analysis of the study data	55
4	Showing risk factors in cases who needed open decortications	62
5	Showing comparison between VATS only group and the group of VATS followed by open decortication	62
6	Showing comparison between VATS only group and open decortication group as regard time of presentation after onset of symptoms	63

List of Figures

Fig.	Title	Page
1	Parts of the pleura	5
2	Parietal pleural reflections and recesses	6
3	Diagrammatic representation of pleural	10
	fluid formation and the parietal and	
	visceral pleura	
4	Schema shows mechanism of pleural	22
	effusion development in pneumonia	
5	Showing a patient in the dead lateral	47
	position	
6	Showing double lumen endotracheal	47
	tube	
7	Showing the wound of a single port	48
	VATS	
8	Showing thoracoscopic view in a patient	49
	with pleural empyema, large quantity of	
	fibrins impedes lung expantion.	
	Improved lung expantion is seen after	
	the debridement of the pleural cavity	
9	showing age distribution of the study	53
10	Showing percent of males and females in	54
	the study	
11	Showing percent of risk factors among	57
	the study patients	
12	Showing comparison between the two	58
	stages	
13	Showing percent of ICU stay	59
14	Showing percent of hospital stay	59
15	Showing comparison between pre and	60
	postoperative TLC	

List of Figures (Cont.)

Fig.	Title	Page
16	Showing percent of cases who needed	61
	open decortications	
17	Showing the relationship between time	64
	of presentation after onset of symptoms	
	and open decortications	
18	Showing comparison between wounds of	65
	VATS and thoracotomy	

Introduction

Despite the impact antibiotics have had on empyema, it remains a common illness with significant morbidity and mortality (*Bartlett JG.*,1988).

The emergence of antibiotic-resistant organisms, the increased frequency of anaerobic and nosocomial infections, and the steadily increasing number of patients with compromised immunity have combined to keep pleural infection a common clinical problem (*Moran JF.*,1988).

Postpneumonic empyema is the most common form of empyema thoracis which accounts for 40–60% of cases (*Chapman SJ and Davies RJ.*,2004).

Postpneumonic effusions occur in 20 to 40% of patients who are hospitalized with pneumonia (*Light RW.*,2001).

The percentage of postpneumonic effusions which become thoracic empyema is variable and ranges from 5 to 20% (*Ozol D et al.*,2006).

Introduction and Aim of the Work

Empyema thoracis is still recognised as a major cause of morbidity and prolonged hospital stay (*De Hoyos and SunderasenS.*,2002).

There are three stages to the development of postpneumonic empyema:

- Stage I is an exudative phase characterised by a clear and thin pleural effusion.
- **Stage II** is a transitional or fibrinopurulent phase where the fluid becomes thick, infected and purulent.
- Stage III which is an organising or consolidative phase where granulation tissue is formed and encases the lung (Molnar TF,2007).

As regard post traumatic infected hemothorax, tube thoracostomy is a common and vital tool in the immediate management of thoracic trauma; however, it is not without complications. Other than technical complications, empyema represents a major burden, which (assuming an approximately 5% incidence and requiring thoracoscopy drainage) (*Maxwell RA*, et al. 2004). However, some series have documented the incidence of empyema as high as 18% (*Luchette FA*, et al. 2000).

Introduction and Aim of the Work

Different surgical treatment modalities are used to manage primary empyema and in the present time video assisted thoracoscopic surgery (VATS) is considered as an effective procedure in the early stages of empyema thoracis (*Luh SP et al.*,2005).

The use of VATS in stage I empyema in comparison to traditional chest drain insertion is a debatable topic.

However, in the late stages of empyema performing VATS becomes difficult and an open approach is often undertaken to decorticate the lung (*RzymanW et al.*,2004).

Introduction and Aim of the Work

Aim of the Work

The aim of this study is to determine the outcomes of patients with early empyema stage I and II who underwent VATS washout with or without decortication on short and mid term basis.

Review of literature

Anatomy of the pleura:

The visceral pleura envelopes the entire surface of both lungs except at the hilum, where the bronchi, pulmonary vessels and nerves enter the lung substance. The parietal pleura covers surface of the chest wall, mediastinum and diaphragm (*Von Hayek*, 1969).

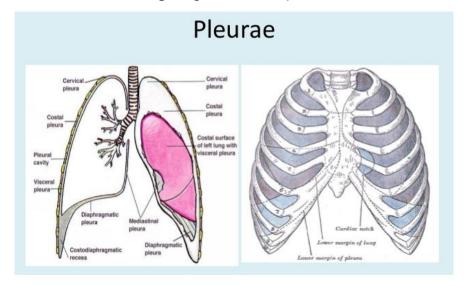


Fig. (1): Parts of the pleura (Drake et al,2010).

Below the merger of visceral and parietal pleura at the hilum, pleural reflections from the dorsal and ventral surface of the lungs usually extend to the diaphragm as a double layer of mesothelial tissue, the pulmonary ligament (*Wang*, 1985).