

Ain Shams University
Faculty of Engineering
Electric Power and Machines Department

Electromechanical batteries for low earth orbit satellites

Master thesis

By:

Eng. Mahmoud mahmmed Kashef Mahmmed

Supervised by:

Prof. Dr. Mahmmed Abd Latef Badr Electrical power & Machine Department Faculty of Engineering Ain Shams University

Dr. Ahmed Mahmmed Attallah

Electrical power & Machine Department

Faculty of Engineering Ain Shams University

Cairo 2014

Approval sheet

For the thesis

Electromechanical batteries for low earth orbit satellites

Presented by

Eng. . Mahmoud mahmmed Kashef Mahmmed

Submitted in partial fulfillment of the requirements for the masters degree in electrical engineering

Approved by

<u>Name</u> <u>Signature</u>

Prof. Dr. Mahmmed Abd Latef Badr

Dr. Ahmed Mahmmed Attallah

Date: / /2014

ExaminersCommittee

The thesis:

Electromechanical Batteries forLow Earth Orbit Satellites

Presented by

Eng.MahmoudmahmmedKashefMahmmed

Submitted in partial fulfillment of the requirements for the masters degree in electrical engineering

Name, Title, Affiliation

Signature

Prof.Dr.Yasser GalalMostafa

Professor, Faculty of Engineering, Arab Academy for Science and Technology and Maritime Transport

Prof.Dr.Mahmmedabdulall

Professor, Faculty of Engineering, Ain Shams University

Prof. Dr. MahmmedAbdLatefBadr

Professor, Faculty of Engineering, Ain Shams University

Dr. Ahmed Mahmmed Attallah

Associate Professor, Faculty of Engineering, Ain Shams University

Table of contents

List of table

List of figures

Symbol and Nomenclature

Chapter 1	1
Introduction	1
1. 1 Scope of the work	1
1.2 Satellite Systems	2
1.3. Earth Orbit satellite Classification	3
1.4. Energy Storage and Topologies	3
1.4.1 Available energy storage technologies	4
1.4.1.1 Electrostatic energy storage	4
1.4.1.2 Electromagnetic energy storage	5
1.4.1.3 Electrochemical energy storage	6
1.4.1.4 Fuel cell energy storage	7
1.4.1.5Electromechanical energy storage	7
1.5 Overview of flywheel technology	8
1.5 LITERATURE REVIEW	10
Chapter 2	17
Satellite power system component	17
2.1. Photovoltaic–Flywheel Power System	17
2.1.1 Solar Array Drive	18
2.1.2 Shunt Dissipater	18
2.1.3 Power Regulator Unit	18

2.1.4 Power Distribution Unit	18
2.1.5 Bus Voltage Controller	18
2.2. Electromechanical System Components	21
2.2.1 Rotor Rim	21
2.2.2 Magnetic Bearings	21
2.2.3 Touchdown Mechanical Bearings	23
2.2.4 Electrical Machine	23
2.2.5 Sensors	24
Chapter 3	26
Flywheel Design Principles	26
3.1 Introduction	26
3.2 Design fundamentals	27
3.3 Flywheel rotor's geometry and materials	28
3.4 Rotor materials Selection	29
Chapter 4	30
Electrical Machine	30
4.1 Electrical Machine Types	30
4.1.1 Direct Current Machine	31
4.1.2 Switched reluctance	31
4.1.3 Induction Machine	32
4.1.4 Permanent magnet synchronous machine	33
4.2 Permanent magnet machine classification	35
4.2.1 Surface PM motors	35
4.2.2 Inset PM Machines	36
4.2.3 Buried PM machines	37

Chapter 5	39
Design of The Permanent Magnet Synchronous Machine Ap Conventional Design Technique	
5.1 Introduction	40
5.2 Design Steps	40
Chapter 6	43
Design of the Permanent Magnet Synchronous Machine for Application	Satellite 47
6.1 Introduction	48
6.2 Design Steps	48
Chapter 7	57
Analysis of hollow cylinder flywheel	57
7.1 Design Flywheel	58
Chapter 8	61
Analysis of performance of Permanent magnetic Synchrono	
8.1 Finite element method	
8.2 Motor mode	
8.3 Generator mode	
8.4. Flux density	
•	
8.5 comparisons of data	
Chapter 9	
Conclusion	69
Future work	70
Appendix A	71
Appendix B	73
Reference	74

List of figures

Figure 1.1. The satellite system	2
Figure 2.1 spacecraft power system architecture with flywheel	
energy storage	17
Figure 2.2 Fatigue life of graphite fiber-epoxy composite compared with	
stainless steel	
Figure 2.3 Magnetic bearing in on configuration	23
Figure 2.4 EMB sensor and bearing location	24
Figure 4.1 Reluctance machine configurations	32
Figure 4.2 surface PM machine configuration	36
Figure 4.3 Inset PM machine configuration	37
Figure 4.4 Buried PM machine configuration	38
Figure 5.1the proposed surface PM machine	40
Figure 6.1the proposed surface PM machine	48
Figure 7.1 the proposed hollow cylinder flywheel with two parts	58
Figure 7.2 the effect of gap in the inner radius of flywheel	58
Figure 7.3 the effect of gap in the inner radius of flywheel	59
Figure 7.4 the effect of gap in overall mass	59
Figure 8.1 layout of machine as designed and to be analyses by finite ele	ment
method	63
Figure 8.2 Air Gap Flux in Motor mode	64

Figure 8.4 Current generated in generator modes	65
Figure 8.5 Flux density for different position	66
Figure 8.6 Flux density for different position List of table	67
Table (1.1) Mass of satellite electric power components using NiH2 B and flywheel (pounds)	•
Table (1.2) Overall benefits of using Flywheel	14
Table (3.1) Shape factor K for different planar stress geometries	28
Table (3.2) characterizes of common rotor material	29
Table (5.1) parameter for machine design	40
Table (5.2) Design Result for EMB	46
Table (6.1) parameters for machine design	48
Table (6.1) Design Result for EMB	56
Table (7.1) Design Result for EMB	60
Table (8.1) comparison table between require and simulation data	68
Table (9.1) Design Result for EMB	70
Table (9.2) Design Result for EMB	70

Figure 8.3 Voltage inducted in Motor mode-----65

Symbol and Nomenclature

GEO geosynchronous Earth orbit,

MEO mid Earth orbit

LEO low Earth orbit

PV photovoltaic systems

PM permanent magnet

SAD solar array drive

PRU power regulator unit

PDU power distribution unit

EMB Electromechanical battery

E the kinetic energy stored

I the moment of inertia

 ω the angular velocity of the flywheel

h the length of the cylinder

r the radius

ρ the density of the cylinder's material.

r_o the outer radius

r_i the inner radius

e_v the kinetic energy per unit volume

e_m per unit mass

K the shape factor

σ The maximum stress in the flywheel

ρ The mass density

PMSM Permanent magnet synchronous machine

BDCM Brushless Dc machine

SRMs Switched reluctance machines

SPM Surface mounted permanent magnet

p The number of pole pair

 α_p PM arc to pole pitch ratio

B_r Magnet remance flux

μ_m Magnet remnant and permeability

N Coil number of turns

Z Axial length

B_{air} The PM air gap flux density (T)

J the linear specific electric loading (Aturns/m)

K_w The winding factor, which include the zone factor, Kws,

and the chording factor, kchs

p_s The number of rotor poles

P_n Rated electromagnetic power

 λ_c Ration between core lengths to pole pitch

N_n Rated speed (rps)

 B_{sv} , B_{ry} the yoke flux density for level of magnetic saturation

Kα first harmonic coefficient of magnet field

Kcu Necessary cupper area for flow one ampere of current

ff Filling factor

 $\omega_2 \hspace{1cm} \text{The final speed of flywheel} \\$

 $\omega_1 \hspace{1cm} \text{The initial speed of flywheel} \\$

Ipm Moment of inertia of permanent magnet

Ife Moment of inertia of ferromagnetic material

Icom Moment of inertia of carbon epoxy material

 $M_{\rm t}$ Total mass of the system

 M_s Mass of stator

 M_c Mass of copper

 $M_{\rm m}$ Mass of permanent magnet

 M_r Mass of rotor

 M_{f} Mass of Flywheel

 $b_{r0} \hspace{1.5cm} \hbox{The slot opening} \; .$

Abstract

In this thesis, a surface-mounted permanent magnet synchronous machine and flywheel are designed and optimized analytically. The machine and flywheel are supposed to be used in low earth orbit satellite as electromechanical battery. Due to the application, there is a limited amount of space for the system which set constraints on the design.

The low earth orbit satellites usually include nano and micro satellites which rotate around the earth is a period of 90 minutes. the most critical part of these satellites are their batteries which supply power to a load of about 100 w during 30 minutes eclipse period.

The electromechanical battery is a motor generator mode device with flywheel which is used to store kinetic energy during motor mode through the flywheel during sunlight and supply electrical power from the stored kinetic energy by the generator mode at eclipse period.

Among several types of machine, the permanent magnet synchronous machine is chosen to be used in this battery with outer rotor to be suitable for the flywheel system for space applications.

An analytical design method for surface mounted permanent magnet machine is described. Special attention is given to the mechanical properties of the machine to withstand high speed which has maximum of a 60000 rpm. A selection of material for the each component of the machine is considered.

The development of flywheel to be a hollow cylindrical body which is composed of two parts to minimize the weight of the system and to optimize its volume and guarantee the storage and supply of enough kinetic energy.

Chapter 1

Introduction

A brief overview of satellite systems, earth orbit classification, energy storage and topologies and current State-of-the-Art in relation to the scope of the work is presented.

1. 1 Scope of the work [1]

Energy storage and conversion have been and will continue to be the key elements in developing satellite project. Most satellites to date utilizes photovoltaic technology for energy conversion during period of existence in sun light and electrochemical technology for energy storage to supply the satellite with power during the eclipse time such a satellite is shown in fig 1. This is the main driving force for the present study and the design of a flywheel for possible application in a satellite.

Flywheel is a mechanical battery; the stored energy can be converted into electricity using an electromagnetic machine in the generating mode.

Recharging (spinning the wheel) is done using the same machine in the motoring mode.

It typically consists of a high speed inertial composite rotor to store kinetic energy, a magnetic bearing support and control system, an electrical machine that can run either as a motor or a generator to undertake the energy transfer to and from the flywheel, a vacuum support housing and containment, compact heat removal and exchangers, Instrumentation for monitoring, control, and power electronics for electrical conversion.

Figure 1.1. The satellite system.

1.2 Satellite Systems [1]

The typical communications satellite consists of the following systems.

- A. Communications and Data Handling
- B. Attitude and Orbit Control System
- C. Tracking, Telemetry, and Command System
- D. Electrical Power System

The electrical power system generates, stores, conditions, controls, and distributes power within the specified voltage band to all bus and payload equipment .The protection of the power system components in case of all credible faults is also included. The basic components of the power system are the solar array, solar array drive, battery, battery charge and discharge regulators, bus voltage regulator, load switching, fuses, and the distribution system.

1.3. Earth Orbit satellite Classification [1]

Satellites are usually sent to rotate around the earth in three levels of orbits

GEO: geosynchronous Earth orbit, circular very distant from earth orbit at

35,786-km altitude

MEO: mid Earth orbit, circular at 2000 to 20,000-km altitude

LEO: low Earth orbit, generally circular at 200 to 2000-km altitude

1.3.1 Low Earth Orbit

This is approximately a circular orbit at low altitude. The International Space Station (ISS) and NASA's space shuttle orbiter operate in low Earth orbit.

Most communications satellites operate in GEO, but some newer constellations are placed in LEO between 500 and 2000-km altitudes.

Being closer to the Earth, smaller and simpler satellites can be used in this orbit. So using low earth orbit satellite must be small as possible as we can, one of the most important components of satellite is battery and battery charge and discharge system.