

Allergy and Anaphylaxis in Perioperative Period; Recent Advances

An Essay

Submitted for Partial Fulfillment of Master
Degree

in Anesthesia
Ain Shams University,
2016

Saeed Abdelwahed Elnaquib *M.B., B. Ch.*

(Ain Shams University)

Supervised by Prof/Dr. Mohamed Hossam El-dine Hamdy Shokier

Professor of Anesthesia, Intensive Care Faculty of Medicine, Ain Shams University

Dr. Manal Mohamed Kamal

Assistant Professor of Anesthesia, Intensive Care Faculty of Medicine, Ain Shams University

Dr.Hany Maher Salib

Lecturer of Anesthesia, Intensive Care Faculty of Medicine, Ain Shams University

First thanks to **ALLAH** to whom I relate any success in achieving any work in my life.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Dr. Mohamed Hosam El-dein Hamdy Shokier,** Professor of Anesthesia, Intensive Care, Faculty of Medicine, Ain Shams University, for his meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to **Dr. Manal Mohamed Kamal**, Assistant Professor of
Anesthesia, Intensive Care, Faculty of Medicine, Ain
Shams University, for her sincere efforts, fruitful
encouragement.

I am deeply thankful to **Dr. Hany Maher Salib**, Lecturer of Anesthesia, Intensive Care, Faculty of Medicine, Ain Shams University, for his great help, outstanding support, active participation and guidance.

Saced Abdelwahed Elnaquib

List of Contents

	Page No.
•	Introduction1
•	Aim of the work3
•	Chapter (1): Pathophysiology of allergy and anaphylaxis
•	Chapter (2): Causes of allergy and anaphylaxis related to anesthesia
•	Chapter (3): Clinical picture of allergy and anaphylaxis in the perioperative period 48
•	Chapter (4): Perioperative anesthetic management of allergy and anaphylaxis 86
•	Summary
•	References
•	Arabic summary

List of Figures

Figure No.	$Page\ No.$
Figure (1.1):	Allergen-specific IgE production and dissemination
Figure (1.2):	Structure of immunoglobulin E (IgE)8
Figure (1.3):	Omalizumab mechanism of action 10
Figure (3.1):	Diagnostic criteria for anaphylaxis51
Figure (4.1):	The etiologic diagnosis of perioperative anaphylaxis relies on a triad including clinical, biologic, and allergologic evidence
Figure (4.2):	The clinical pathway allows for the identification of the culprit agent, documenting the pathophysiologic mechanism (allergic vs. nonallergic) of the perioperative immediate reaction and allows for advice regarding subsequent anesthetics
	<u> </u>

List of Tables

Table No.	Page No.
Table (1.1):	Mediators released during anaphylaxis 15
Table (1.2):	Mechanisms of Anaphylaxis21
Table (2.1):	The causes of anaphylaxis are the mechanisms responsible for the reaction 29
Table (2.2):	Frequent and less frequent elicitors of perioperative anaphylaxis30
Table (3.1):	Symptoms and signs of anaphylaxis54
Table (3.2):	Comorbidities and concurrent medications that might interfere with recognition of trigger or symptoms
Table (3.3):	Differential diagnosis of anaphylaxis 63
Table (3.4):	Available tests for the evaluation of anaphylaxis71
Table (3.5):	Laboratory tests to aid in differential diagnosis
Table (4-1):	Four-step grading scale
Table (4-2):	Concentrations of Anesthetic Agents Normally Nonreactive during Skin Tests 97
Table (4-3):	Pharmacologic activities of epinephrine relevant to anaphylaxis

List of Abbreviations

B W	Body weight
BP	Blood pressure
C	Complement
CT	Computed tomography
ELISA	Enzyme-linked immunosorbent assay
FcεRI	Fc epsilon RI
IgE	Immunoglobulin E
IgG	Immunoglobulin G
IgM	Immunoglobulin M
IL	Interleukin
IM	Intramuscular
IV	Intravenous
LT	Leukotriene
PAF	Platelet activating factor
PGD2	Prostaglandin D2
SC	Subcutaneous
SIRS	Systemic inflammatory immune response

SJS	Stevens-Johnson syndrome
TEN	Toxic epidermal necrolysis
TNF	Tumor necrosis factor
WAO	World allergy organization
wно	World health organization
μg/L	Microgram per Liter

INTRODUCTION

Anaphylaxis is an acute, potentially lethal, multisystem syndrome resulting from the sudden release of mast cell and basophil-derived mediators into the circulation. It most often results from immunologic reactions to foods, medications, and insect stings, although it can also be induced through non-immunologic mechanisms by any agent (e.g. latex) capable of producing a sudden, systemic degranulation of mast cells or basophils (**Ebo et al., 2008**).

The term "anaphylaxis" has traditionally been reserved for IgE-dependent events, and the term "anaphylactoid reaction" has been used to describe IgE-independent events, although the two reactions are often clinically indistinguishable (**Gerber and Pichler, 2006**).

Patients undergoing general anesthesia and surgery can experience complex physiologic changes. Recognition of an allergic reaction that occurs during anesthesia is potentially masked by hypotension produced during induction of anesthesia by Propofol or other induction agents, sympathectomy associated with spinal/epidural anesthesia, the inability of the anesthetized patient to communicate early symptoms such as itching, and coverage of the patient by surgical drapes that may obscure detection of cutaneous signs (Johansson et al., 2010).

Introduction

The most common identifiable causes of perioperative anaphylaxis are neuromuscular-blocking agents (NMBAs), antibiotics, latex, hypnotic induction agents (primarily barbiturates), opioids, and colloids. However, there is a much longer list of agents that are implicated less regularly. In a significant number of cases, no specific trigger can be identified (Mertes et al., 2008).

The safest management approach for a patient with past anaphylaxis is the definitive identification and complete avoidance of the trigger. If this is not possible or evaluation does not reveal a specific culprit, then future management is high-risk based upon avoidance of agents implementation of general precautions. For patients who require repeat anesthesia, general precautionary measures include optimal preoperative control of asthma, slow administration of antibiotics and other high-risk agents, and avoidance (when possible) of beta-blockers, angiotensinconverting enzyme (ACE) inhibitors, and drugs that cause direct histamine release from mast cells/basophils (Mertes et al., 2011).

AIM OF THE WORK

The aim of this work is to high lighten the perioperative anesthetic management of allergy and anaphylaxis and how to avoid occurance of their complications.

Chapter (1):

PATHOPHYSIOLOGY OF ALLERGY AND ANAPHYLAXIS

Anaphylaxis is acute, potentially lethal, an multisystem syndrome resulting from the sudden release of mast cell- and basophil-derived mediators into the circulation (Sampson et al., 2006). It most often results from immunologic reactions to foods, medications and insect stings, although it can also be induced through nonimmunologic mechanisms by any agent capable of producing a sudden, systemic degranulation of mast cells or basophils (Kemp and Lockey, 2002).

Terminology:

The term "anaphylaxis" has traditionally been reserved for IgE-dependent events, and the term "anaphylactoid reaction" has been used to describe IgE-independent events, although clinically the two reactions are often indistinguishable. The World Allergy Organization an international umbrella organization representing a large number of regional and national professional societies dedicated to allergy and clinical immunology, has proposed discarding this nomenclature. The WAO categorizes anaphylaxis as either immunologic or nonimmunologic, and

this is the terminology used in this review (Johansson et al., 2004).

1-Immunologic anaphylaxis:

IgE-mediated:

The classical mechanism associated with human allergic disease is initiated by an antigen (allergen) interacting with allergen-specific IgE bound to the receptor Fc-epsilon-RI on mast cells and/or basophils. The events leading to allergen-specific IgE production in an atopic individual are complex. In brief B cells are driven to differentiate into IgE-producing cells via the activity of the type 2 subset of CD4-bearing helper T cells. This process largely takes place in the peripheral lymphoid tissues. The cytokines interleukin-4 and its receptors and IL-13 and its receptor contribute to IgE responses in humans. Once produced, allergen-specific IgE diffuses through the tissues and vasculature, and constitutively occupies high-affinity IgE receptors on mast cells and basophils (Figure 1.1).

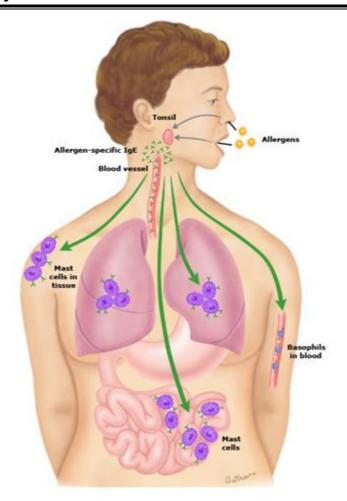


Figure (1.1): Allergen-specific IgE production and dissemination (Schwartz, 2004).

Allergen-specific IgE production and dissemination IgE: immunoglobulin E.

ROLES OF IgE:

Immunoglobulin E (IgE) is important in defense against parasitic diseases, especially those caused by helminthes and some protozoa. However, due in part to the

redundancy of the immune system, low or absent levels of IgE do not predispose people to severe parasitic infections. IgE is **not** believed to play an important role in defense against bacterial infections, since it does not activate complement or participate in opsonization (**Stone et al.**, **2010**).

STRUCTURE:

Immunoglobulin E (IgE) is one of five isotypes of human immunoglobulins, IgG, IgA, IgM, IgD, and IgE (Schroeder et al., 2010). All immunoglobulins composed of two light chains and two identical heavy chains (figure 1). The heavy chain differentiates the various immunoglobulin isotypes. The heavy chain in IgE is epsilon. IgE is a monomer and consists of four constant regions in contrast to other immunoglobulins that contain only three constant regions. Due to this extra region, the weight of IgE is 190 kDa compared with 150 kDa for IgG. The C-epsilon-2 constant domain is unique to IgE, while the C-epsilon-3 region binds to the low- and high-affinity IgE receptor. Of note, the anti-IgE monoclonal antibody omalizumab also binds to the C-epsilon-3 region, so the binding of omalizumab to IgE decreases the amount of "free" IgE available for binding to IgE receptor-bearing cells, including mast cells and basophils (figure 1.2).

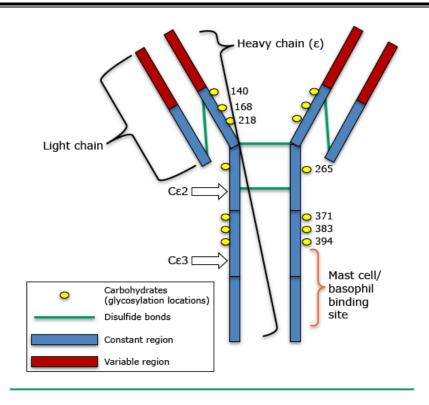


Figure (1.2): Structure of immunoglobulin E (IgE) (Schroeder et al., 2010; Arnold et al., 2007).

IgE: immunoglobulin Ε; ε: epsilon

IgG-mediated:

(in animal models) IgG-dependent anaphylaxis has not been demonstrated in humans. However, human IgG receptors are capable of activating macrophages and neutrophils to secrete Platelet activating factor "PAF" (Jönsson et al., 2012), and PAF can activate mast cells in vitro (Kajiwara et al., 2010), so PAF potentially may contribute to human anaphylaxis. Additionally, anaphylaxis