

Systematic Review of Literature on the use of Radial Head Prosthesis Versus Fixation in Fracture Head of Radius in Young Adults

Essay

Submitted for Partial Fulfillment of Master Degree in Orthopaedic Surgery

Presented by Islam Mohamed Mohamed Soliman

(M.B.B.Ch., Ain Shams University)

Supervised by:

Prof. Dr. Tarek Mohamed Samy

Professor of Orthopedic Surgery
Faculty of Medicine – Ain Shams University

Dr. Amr Ahmed Abdelrahman

Assistant Professor of Orthopedic Surgery Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2016

الأصطناعية الكعبرة عظمة رأس استخدام حول منهجية دراسة البالغين في الكعبرة عظمة رأس لكسر الجراحي التثبيت مقابل

رسالة

العظام جراحة في الماجستير درجة على للحصول توطئة مقدمة

🗌 من مقدمة

□سليمان محمد محمد طبيب / إسلام

اجامعة عين شمس والجراحة- الطب بكالوريوس \Box

[إشراف تحت

السامي محمد الدكتور / طارق الأستاذ

جراحةالعظام أسناذ

كلية الطب جامعة عين شمس

الرحمن عبد أحمد الدكتور / عمرو

🗌 مساعد جراحة العظام اسناذ

كلية الطب جامعة عين شمس

الجامعة عين شمس مسلة عين شمس 1. 1. 1

First and forever, thanks to "ALLAH", the Almightly, the Gracious, who give us the knowledge and have given me the strength to achieve my work.

I wish to express my deepest appreciation and gratitude to **Prof. Dr. Tarek Mohamed Samy**, Professor of Orthopedic Surgery, Faculty of Medicine – Ain Shams University, for his guidance, support, for introducing me in to this exciting field of research.

I hope to express my deepest gratitude to **Dr. Amr Ahmed Abdelrahman**, Assistant Professor of Orthopedic Surgery, Faculty of Medicine – Ain Shams University, for his beneficial guidance, valuable remarks, keen supervision and moral support throughout this work.

I owe countless thanks to My Family, as they have supported me throughout life. Father, Mother, Brother and sister thank you for teaching me how to always strive for excellence.

I would like to express my profound gratitude and love to my seniors, colleagues and friends.

Islam Mohamed Mohamed

LIST OF CONTENTS

	Page
List of Abbreviation	I
List of Tables	II
List of Figures	III
List of charts	IV
Introduction	1
Aim of the Work	11
Materials and Methods	12
Results	15
Discussion	34
Summary	38
Conclusion	40
References	41
Arabic Summary	

LIST OF ABBREVIATION

ASES-e	American system shoulder and elbow surgeons scoring
AvN	Avascular necrosis
DASH	Disabilities of the arm, shoulder and Hand score
LCL	Lateral collateral ligament
LUCL	Lateral ulnar collateral ligament
MCL	Medial collateral ligament
MEPI	Mayo Elbow Performance Index
No.	Number
ORIF	Open reduction and internal fixation
RHP	Radial head prosthesis
ROM	Range of motion
TFCC	Triangular fibrocartilage complex
PMC	PubMed central

LIST OF TABLES

No.	Table	Page
1-	Summary of study and patient characteristics	15
2-	Frequency of reporting of radial head implants among studies used in this review	17
3-	ROM of ORIF group of patients	19
4-	ROM of Replacement group of patients	19
5-	comparison of mean ROM between ORIF and RHP groups of patients	20
6-	Elbow strength in ORIF group of patients	21
7-	Elbow strength in replacement group of patients	21
8-	post ORIF functional outcome measures	23
9-	post replacement functional outcome measures	24
10-	Comparison of Total functional outcome measures between ORIF and RHP groups of patients	24
11-	complications post ORIF	31
12-	Complications post replacement	32
13-	Comparison of complications between ORIF and RHP groups of patients	33

LIST OF FIGURES

No.	Figure	Page
1-	Normal elbow range of motion (ROM).	4
2-	Forces at elbow during internal rotation	4
3-	Medial collateral ligament (MCL).	6
4-	Different type of radial head prosthesis (RHP).	7
5-	Radial head implants recently used.	8
6-	The Ascension Modular Radial Head (Ascension Orthopedics, Austin, TXI, USA).	8
7-	The Solar Radial Head Implant System (Stryker, Mahwah, NJ, USA).	8
8-	The CRF II by Tornier (Saint Ismier Cedex, France).	9
9-	The Katalyst by KMI (Carlsbad, CA,USA)	9
10-	The Swanson Titanium Radial Head implant. (Courtesy of Wright Medical Technology, Arlington, Texas; with permission).	9
11-	The ExploR® Modular Radial Head by Biomet (Courtesy of Biomet Orthopedics, Warsaw, IN; with permission).	9
12-	The rHead by Small Bone Innovations (Courtesy of SBI, Morrisville, Pennsylvania; with Permission).	9
13-	Direct repair of the MCL of the elbow enhancing stability	10
14-	PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram for study selection.	14
15-	American shoulder and elbow surgeons scoring system (ASES-e).	26
16-	Broberg and Morrey scale	27
17-	Mayo Elbow Performance Index (MEPI).	28
18-	Disabilities of the arm, shoulder and Hand score (DASH)	29

LIST OF CHARTS

No.	Chart	Page
1-	Comparison of mean ROM between ORIF and RHP groups of patients by degrees.	20
2-	Comparison of Total functional outcome measures between ORIF and RHP groups of patients.	25
3-	Comparison of complications between ORIF and RHP groups of patients by percentage.	33

Abstract

Although several treatment options for radial head fractures are available, no clear solutions exist.

In this study we therefore compare open reduction and internal fixation (ORIF) with radial head prosthesis replacement in treatment of radial head fractures of Mason type III.

The mean age of patients mentioned in the studies was 46.4 years old. Mean age of ORIF group of patients was 50.4 years old, while the mean age of radial head replacement group of patients was 42.5 years old. 232 patients underwent ORIF (open reduction and internal fixation) and 287 underwent radial head replacement. 342 males and 177 females. Mean follow up period was 32.3 months (2.89 years).

We concluded that ORIF has no superiority over radial head replacement and vice versa, and still a lot of controversies between two methods of management for fracture head of radius (Mason type 3).

Keywords

• Radial, head, prosthesis, fixation, adults, young, systematic, review

Introduction

Radial head fractures represents one third of all elbow fractures, so they are common injuries. Isolated radial head fracture may occur but mostly accompanied with injury to lateral & medial collateral ligaments (LCL and MCL).⁽¹⁾

Most of isolated radial head fractures are stable. (2) Open reduction and internal fixation was very impressive, perhaps it was used for stable & minimally displaced radial head fractures which has very good results even with non-operative management. (3)

Regarding unstable, multi-fragmented and displaced radial head fractures they are prone to poor forearm rotation and non-union after ORIF. (4)

Early failure of fixation is common within 1st 3-6 months in fractures including the whole radial head which creates more than 3 articular fragments.⁽⁵⁾

Cases of comminuted radial head which will not get benefit from ORIF, excision is used. This alters elbow kinematics, increases laxity and leads to proximal migration of the Radius, which causes weak hand grip and wrist pain. (6)

Replacement of the radial head with prosthesis referred to as RHP, helps to restore elbow stability. Patients who have

"Unhappy triad"which is fracture dislocation of radial head combined with coronoid fracture and complete medial collateral ligament disruption, are most likely to benefit from replacement. (7)

Many types of materials are used to fabricate radial head prosthesis such as Silicone, Vitallium, Rubber, pyro-carbon and titanium^(8,9). The use of Silicone was stopped ⁽¹⁰⁾ as authors reported that it may lead to inadequate counteracting to valgus and axial loading to at capitello-radial joint.^(11,12)

Also, some authors reported inflammatory synovitis due to long term use of implants ^(13,14,15). Metal implants were reported to be rigid, and may resist the deforming forces. ^(15, 16)

There are two basic designs used for replacement of radial head. First a polished stem with a monopolar or modular head acting as a spacer. The 2nd design is a rigid fixed stem with a bipolar or monopolar head.^(17,18)

Bipolar prosthesis is like monoblock prosthesis having the same advantage to maintain congruency of the radial head with the capitellum and sigmoid notch during the elbow movement. Also restore stability to valgus stress. (17,19,20)

Metallic prosthesis can produce load across elbow joint than silastic prosthesis as reported by biomechanical studies. (8)

There is a general agreement regarding Mason's classification that both type 1 will be Managed conservative, type 2 will undergo ORIF.

However, Choice between either fixation or replacement for fracture head of radius (Mason type 3) in young adults patients is a big dilemma from practical point of view and also regarding data extracted from literature. (3)

The great confusion between choice of fixation and replacement comes from choice between advantage and disadvantage of both methods; roughly speaking fixation may lead to disturbance of elbow joint biomechanics. On the other hand replacement helps to keep elbow biomechanics. (3)

The articulation between radial head and radial notch of the ulna leads to radial deviation of the radius shaft during pronation⁽²²⁾. Articulation between radius and capitellum is very important for load transfer and elbow stability, 60 % of the load passing through the elbow is born by radial head ⁽²⁴⁾. About 3 times of body weight can be conducted through the joint between radius and capitellum during stressful activities⁽²⁷⁾. The forces may reach up to 9 times of the body weight after radial head excision due to increased tension over MCL, where the forces are concentrated on the trochlea and coronoid (Fig.1,2) ⁽²⁷⁾.

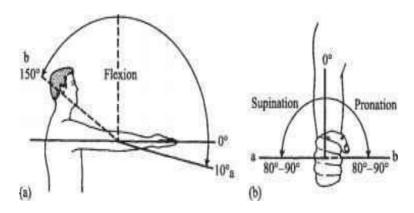


Fig. (1): Normal elbow range of motion (ROM). (23)

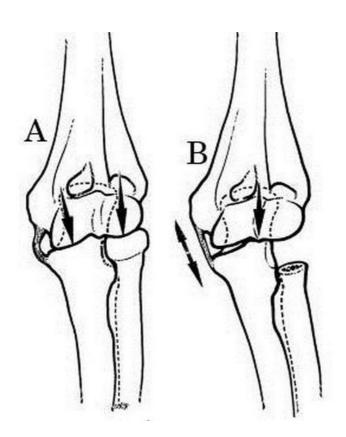


Fig. (2): Forces at elbow during internal rotation A. normal elbow B. excised head radius with valgus instability. (25)