INDUCING RESISTANCE AGAINST LEAF MINER AND OTHER PESTS ATTACKING SOME TOMATO VARIETIES IN EL-MINIA GOVERNORATE

By

NEHAL MOSTAFA HUSSEIN AHMED

B.Sc. Agric. Sc. (General), Minia University, 1993 M.Sc. Agric. Sc. (Pesticides), Minia University, 2000

A thesis submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in Agricultural Science (Pesticides)

Department of Plant Protection

Faculty of Agriculture

Ain Shams University

2014

Approval Sheet

INDUCING RESISTANCE AGAINST LEAF MINER AND OTHER PESTS ATTACKING SOME TOMATO VARIETIES IN EL-MINIA GOVERNORATE

By

NEHAL MOSTAFA HUSSEIN AHMED

B.Sc. Agric. Sc. (General), Minia University, 1993 M.Sc. Agric. Sc. (Pesticides), Minia University, 2000

Dr. Mohamed Bassem Ali Mokbel Ashour Prof. Emeritus of chemistry and toxicity of pesticides, Faculty of Agriculture, Zagazig University. Dr. Mohamed El-Said Saleh El-Zemaity Prof. Emeritus of chemistry and toxicity of pesticides, Faculty of Agriculture, Ain Shams University. Dr. Mohamed Ibrahim El-Sayed Hussein. Prof. Emeritus of chemistry of pesticides and toxicants,

This thesis for Ph.D. degree has been approved by:

Faculty of Agriculture, Ain Shams University.

Date of Examination: 23/9/2014

INDUCING RESISTANCE AGAINST LEAF MINER AND OTHER PESTS ATTACKING SOME TOMATO VARIETIES IN EL-MINIA GOVERNORATE

By

NEHAL MOSTAFA HUSSEIN AHMED

B.Sc. Agric. Sc. (General), Minia University, 1993 M.Sc. Agric. Sc. (Pesticides), Minia University, 2000

Under the supervision of:

Dr. Mohamed Ibrahim El-Sayed Hussein

Prof. Emeritus of chemistry of pesticides and toxicants, Department of Plant Protection, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Seif El-Nasr Hussein Gad El-Hak

Prof. Emeritus of Vegetable Crops, Department of Horticulture, Faculty of Agriculture, Minia University

Dr. Maher Abd Al-Aleem Hammad

Assistant Prof. of chemistry and toxicity of pesticides, Department of Plant Protection, Faculty of Agriculture, Ain Shams University

ABSTRACT

Nehal Mostafa Hussein Ahmed: Inducing Resistance Against Leaf Miner and Other Pests Attacking some Tomato Varieties in El-Minia Governorate. Unpublished Ph.D. Thesis, Department of Plant Protection, Faculty of Agriculture, Ain Shams University, 2014.

Plant defensive systems against herbivores such as leafminers and piercing-sucking insect pests can be induced by application of biotic and abiotic elicitors. In this study, we focused on induction of plant defense to induce resistance against some important economic insect pests as a new approache for controlling some pests to the tested plant, tomato (*Solanum lycopersicum*) cv. GoldStone Hybrid F₁. The presented study includes the following objectives:

- ➤ The first, is a survey of *Tuta absoluta* in tomato nursery and field.
- ➤ The second, investigates the effects of some elicitors on controlling *Tuta absoluta* and other major pests as well as effects on yield and some characteristics of tomato fruits.
- The third, is studying the effect of the elicitor treatments on some enzymes activities, total phenolic compounds and total flavonoids of tomato plants.
- ➤ The fourth investigates the effect of two local medicinal plant extracts and essential oils on *Tuta absoluta* population, plant growth and yield of tomato cv. Gold Stone.
- ➤ The fifth objective explores the effect of these two local medicinal plant extracts and the essential oils on total phenolic compounds and total flavonoids of tomato plants.

It can be concluded according to the results of the present study, that foliar application of elicitors can be used as a new approach of direct or indirect defense against various herbivores and crop protection. However, inducing resistance of plants depends on many factors such as the type of plant, herbivore, elicitor, time of application, growth stage of plant and natural enemies or biological control. Also, according to these results, it can be concluded that foliar application of garlic extract, lemon grass extract and basil oil on tomato plants, at recommended rates, reduced *T. absoluta* population and improved the quality and quantity of tomato fruits yield. So, further studies should be done in the future to cover these new approaches for controlling tomato pests.

Key Words:

Tuta absoluta, Tomato pests, Elicitors, Essential oils, Plant extracts.

ACKNOWLEDGEMENT

Above all, thanks to **ALLAH** for everything I was able to do in this work.

My sincere gratitude and appreciation is to *Prof. Dr. Mohamed Ibrahim Hussein*, Professor of Chemistry of Pesticides and Toxicants who very kindly and generously gave me his keen supervision, valuable advices, and encouragement during the course of this work.

I would like also to express my deep regards to *Prof. Dr. Seif El-Nasr Hussein Gad El-Hak*, Professor of Vegetable Crops, Minia

University for his supervision, revising the manuscript, guidance and cooperation during writing this dissertation, without his help I would not have achieved this work.

Thanks and gratitude are given to *Dr. Maher Abed Al-Aleem Hammad*, for his keen help in this work. Also, deep thanks to *Dr. Hisham Saleh Shaalan*, for his valuable suggestions.

Profound thanks to *Dr. Naser Sayed Youssef*, Horticulture Research Institute, for his unlimited support during the field experimental phase and providing many of materials needed to complete my laboratory work. I am deeply indebted to *Prof. Dr. Gamal Fakhry Abd El-Naeem*, Professor of Biochemistry in Minia University, for his excellent help in chemical analysis.

I would like to express my deep regards to the spirit of *Prof. Dr. Zidan Hendy Abd El-Hamid*, Professor of Pesticides Chemistry and Toxicology, owner of the idea of this work.

I am sincerely would like to thank my husband, *Dr. Hassan Sayed Hassan* for his patience, support and cooperation till this work was completed. My gratitude is also extended to the rest of my *parents*, my

brother, *Mohamed* and my children for their continuous support. Also, I would like to express my deep regards to the spirit of my brother, *Nezar*. I am also obliged to the members of Plant Protection Department in Faculty of Agriculture, Ain-Shams University, and Department of Horticulture (Vegetable Crops), Minia University, for their unlimited cooperation throughout all phase of this work.

CONTENTS

	Page
LIST OF TABLES	iv
LIST OF FIGURES	vii
LIST OF PLATE	ix
1-INTRODUCTION	1
2-REVIEW OF LITERATURE	6
2.1 Tomatoes	6
2.2 Common tomato pests in Egypt	6
2.3 <i>Tuta absoluta</i> infestation in Egypt	7
2.4 Mechanisms of inducing resistance in plants to insect pests	9
2.5 The role of elicitor inducers in inducing resistance of plants	30
to insect pests	
2.5.1 Chemical inducers	30
2.5.2 Effect of Effective Microorganisms (EM)	48
2.6 The role of enzymes activities in plant defense	56
3. The role of plant extracts and essential oils on pests control	63
3- MATERIAL AND METHODS	73
3.1Materials	73
3.1.1 Tested plant: Tomato	73
3.1.2 Prevalling insects	73
3.1.3_Prevalling mite	73
3.1.4 Prevalling natural enemies	73
3.1.5 Testing elicitor materials	73
3.1.5.1 Synthetic chemicals	73
3.1.5.2 Biological agent	75

3.1.6 Natural substances	75
3.1.6.1 Essential oils	75
3.1.6.2 Aqueous extracts	75
3.1.7 Solvents	76
3.2 Experimental Methods	76
3.2.1 Monitoring and survey of <i>Tuta absoluta</i> in tomato nursery	
and open	76
field	
3.2.2 Effect of some elicitors on the prevalent insect population,	
plant, yield and some tomato fruits characteristics	78
3.2.2.1 Field evaluation of prevalent pests	80
3.2.3 Effect of some essential oils and two local medicinal plant	
extracts on Tuta absoluta population, plant growth and	
yield of tomato	81
3.2.3.1 Field data	82
3.2.4 Growth, fruit and yield characteristics	82
3.2.5 Extraction and determination of total phenolic compounds	
(TPCs)& total flavonoids (TFs)	85
3.2.6 Polyphenol oxidase (PPO) activity assay	85
3.2.7 Peroxidase (POD) activity assay	85
4- RESULTS AND DISCUSSION	86
4.1 Examination the <i>Tuta absoluta</i> pest in nursery and Field	86
4.2 Effect of some elicitors on controlling Tuta absoluta and	
other major pests as well as yield and characteristics of	
tomato fruits	93
4.2.1 Effect on elicitor treatments foliar damage of <i>Tuta absoluta</i>	93
4.2.2 Effect of the elicitor treatments on % infested leaflets	
populations of Tuta absoluta under Laboratory	
examination conditions	98
4.2.3 Effect of the elicitor treatments on foliar damage of	
Liriomyza trifolii	102
4.2.4 Effect of the elicitor treatments on % infested leaflets and	
populations of leafminer (Liriomyza trifolii) under	

Laboratory examination conditions	106
4.2.5 Effect of the elicitor treatments on adult stage of white fly	108
4.2.6 Effect of the elicitor treatments on population of whiteflies	
per leaflet (Laboratory examination)	112
4.2.7 Effect of the elicitor treatments on other prevalence pests	115
4.2.8 Effect of the elicitor treatments on common natural	129
4.2.9 Effect of the elicitor treatments on infestation of tomato	
fruits with Tuta absoluta and bollworm	132
4.2.10 Effect of the elicitor treetments on some terrots fruit	
4.2.10 Effect of the elicitor treatments on some tomato fruit	132
characteristics	
4.2.11 Effect of the elicitor treatments on total tomato fruit yield	136
4.2.12 Effect of the elicitor treatments on dry weights of	126
vegetative growth and tomato fruits	136
4.3 Effect of the elicitor treatments on enzymes activities, total	
phenolic compounds (TPCs) and total flavonoids (TFs) of	140
tomato plants	140
4.3.1 Effect of the elicitor treatments on total phenolic	
compounds (TPCs) and total flavonoids (TFs) of tomato plants	140
4.3.2 Effect of three elicitors on peroxidase (POD) and	170
polyphenol oxidase (PPO) enzymes activities	141
	171
4.4 Effect of two local medicinal plant extracts and four essential	
oils on <i>Tuta absoluta</i> population, plant growth and yield	151
of tomato	151
4.4.1 Effect of two local medicinal plant extracts and four essential oils foliar on damage of <i>Tuta absolut</i>	151
4.4.2 Effect of two local medicinal plant extracts and four	131
essential oils on infestation of fruits with <i>Tuta absoluta</i>	
and bollworm	155
4.4.3 Effect of two local medicinal plant extracts and four	133
essential oils on some tomato fruit characteristics	156
4.4.4 Effect of two local medicinal plant extracts and four	130
T.T.T LITECT OF TWO TOCAL INCUICINAL PIAIR EXTRACTS AND TOUR	

essenti	al oils on total tomato fruit yield and dry weights of	
ve	getative growth and tomato fruits	157
4.4.5	Effect of two local medicinal plant extracts and four	
essenti	al oils on total phenolic compounds (TPCs) and	
total f	flavonoids (TFs) of tomato plants	161
5-SU	MMARY	167
6-RE	FERENCES	175
7-	· ARABIC SUMMARY	
	LIST OF TABLES	
No.		Page
1	Mean of field temperatures and relative humidity on two	
	successive seasons (2011 &2012)	77
2	Locations of <i>Tuta absoluta</i> monitoring traps	78
3	Survey of <i>Tuta absulota</i> existance in tomato nursery in two	
	summer seasons, 2011 & 2012	89
4	Survey of Tuta absulota in farmer's field at Tahnasha	
	El.Minia, Egypt in 2011 & 2012 district,	89
5	Survey of Tuta absulota at the Experimental Farm, Faculty	
	Agriculture, Minia University in 2011 &2012 of	91
6	Efficacy of some elicitors against <i>Tuta absoluta</i> pest on	
	tomato cv. GoldStone hybrid in 2011	95
7	Efficacy of some elicitors against <i>Tuta absoluta</i> pest on	
	tomato cv. GoldStone hybrid in 2012	96
8	Efficacy of some elicitors on % infested leaflets and	
	population of <i>Tuta absoluta</i> in two successive seasons	
	2011and 2012 after 48, 55, 64 and 75 days after cultivation	
	(DAC) tomato cultivar GoldStone hybrid F1 in 2011&	
	2012	99
9	Efficacy of some elicitors against leaf miner (<i>Liriomyza</i>	
,	Differency of some energies against lear limiter (Entomyza	

	trifolii) pest on tomato cv. GoldStone hybrid in 2011	103
10	Efficacy of some elicitors against leaf miner (Liriomyza	
	trifolii) pest on tomato cv. GoldStone hybrid in 2012	104
11	Efficacy of some elicitors on % infested leaflets and	
	population of leaf miner in two successive seasons 2011	
	and 2012 after 48, 55,64 and 75 days after cultivation	
	tomato cultivar GoldStone hybrid	107
12	Efficacy of some elicitors against whitefly pest on tomato	
	cv. GoldStone hybrid F1 in 2011	109
13	Efficacy of some elicitors against whitefly pest on tomato	
	cv. GoldStone hybrid F1 in 2012	110
14	Efficacy of some elicitors on population of whitefly /leaflet	
	in 2011	113
15	Efficacy of some elicitors on population of whitefly /leaflet	
	in 2012	114
16	Efficacy of some elicitor treatments on % reduction of	
	aphid population in 2011	117
17	Efficacy of some elicitor treatments on % reduction of	
	aphid population in 2012	117
18	Efficacy of some elicitors on %reduction of jassid	
4.0	population /leaflet in 2011	121
19	Efficacy of some elicitors on %reduction of jassid	101
20	population/leaflet in 2012	121
20	Efficacy of some elicitors on % reduction of red mite	104
21	population / leaflet in 2011.	124
21	Efficacy of some elicitors on % reduction of red mite	124
22	population let in 2012	124
22	Efficacy of some elicitors on % reduction of thrips	127
23	population in 2011 Efficacy of some elicitors on % reduction of thrips	14/
23	population in 2012	127
	population in 2012	14/

24	Efficacy of some elicitors on numbers of predators in 2011	130
25	Efficacy of some elicitors on numbers of predators in 2012	131
26	Determination of infestation in 25 fruits /plot treated with	
	elicitors in season 2011	131
27	Determination of infestation in 25 fruits /plot treated with	
	season 2012 elicitors in	134
28	Effect of some elicitors on tomato fruit characteristics of	
	hybrid cultivar GoldStone F1 in the two successive seasons	
	of 2011 and 2012	135
29	Efficacy of some elicitors on yield in two successive	
	seasons (2011 & 2012)	137
30	Efficacy of some elicitors on percentage of vegetative and	
	fruit dry weight as well as yield in two successive seasons	
	(2011 & 2012)	139
31	Total phenolic compounds and total flavonoids in	
	uninfested and infested tomato leaves after 24 hours of	
	elicitor treatments	143
32	Determination of Peroxidase (POD) after treated tomato	
	chemical elicitorsplants with	145
33	Determination of Polyphenol oxidase (PPO) after treated	
	tomato plants with chemical elicitors	146
34	Efficacy of two plant extracts and four aromatic oils against	
	Tuta absoluta on tomato cv. GoldStone hybrid in season	
	2011	153
35	Efficacy of two plant extracts and four aromatic oils against	
	Tuta absoluta on tomato cv. GoldStone hybrid in season	
	2012	154
36	Effect of two plant extracts and four aromatic oils on	
~ -	percentage of infested fruits, 2011	155
37	Effect of two plant extracts and four aromatic oils on	4
	percentage of infested fruits, 2012	156

38	Effect of two plant extracts and four aromatic oils on	
	tomato fruit characteristics of hybrid cultivar GoldStone in	
	two successive seasons, 2011 & 2012	158
39	Efficacy of two plant extracts and four aromatic oils on	
	yield in two successive seasons (2011 & 2012)	161
40	Total phenolic compounds and total flavonoids in	
	uninfested and infested tomato leaves after 24 hours of	
	plant extracts and essential oils	162

LIST OF FIGURES

No.		Page
1	Survey of <i>Tuta absulota</i> at the Experimental Farm, Faculty	
	of Agriculture, Minia University in 2011	92
2	Survey of <i>Tuta absulota</i> at the Experimental Farm, Faculty	
	Agriculture, Minia University in 2012 of	92
3	Efficacy of some elicitors against Tuta absoluta pest on	
	tomato cv. GoldStone hybrid F1 in 2011	97
4	Efficacy of some elicitors against Tuta absoluta pest on	
	tomato cv. GoldStone hybrid F1 in 2012	97
5	Efficacy of some elicitors against leaf miner (Liriomyza	
	trifolii) pest on tomato cv. GoldStone hybrid F1 in 2011	105
6	Efficacy of some elicitors against leaf miner (Liriomyza	
	trifolii) pest on tomato cv. GoldStone hybrid F1 in 2012	105
7	Efficacy of some elicitors against whitefly pest on tomato	
	cv. GoldStone hybrid F1 in 2011	111
8	Efficacy of some elicitors against whitefly pest on tomato	
	cv. GoldStone hybride F1 in 2012	111
9	Efficacy of some elicitors on % reduction of aphid	
	population in 2011	118
10	Efficacy of some elicitors on % reduction of aphid	
	population in 2012	118
11	Efficacy of some elicitors on %reduction of jassid	
	population /leaflet in 2011	122
12	Efficacy of some elicitors on %reduction of jassid	
	population/leaflet in 2012	122
13	Efficacy of some elicitors on % reduction of red mite	
	population / leaflet in 2011	125
14	Efficacy of some elicitors on % reduction of red mite	

125	population / leaflet in 2012
	15 Efficacy of some elicitors on % reduction of thrips
128	population in 2011
	16 Efficacy of some elicitors on % reduction of thrips
128	population in 2012
	17 Efficacy of some elicitors on yield in two successive
137	(2011 & 2012) seasons
	18 Efficacy of some elicitors on percentage of vegetative dry
139	weight of tomato cv. GoldStone hybrid F1
	19 Efficacy of some elicitors on percentage of fruits dry
140	weight of tomato cv. GoldStone hybrid F1
	20 Total phenolic compounds in uninfested and infested
144	tomato leaves after 24 hours of elicitor treatments
	21 Total flavonoids in uninfested and infested tomato leaves
144	after 24 hours of elicitor treatments
	22 Determination of peroxidase (POD) after treated tomato
145	plants with chemical elicitors
	23 Determination of polyphenol oxidase (PPO) after treated
146	tomato plants with chemical elicitors
	24 Efficacy of two plant extracts and some aromatic oils on
159	yield in two successive seasons (2011 & 2012)
	25 Total phenolic compounds in uninfested and infested
	tomato leaves after 24 hours of plant extract and essential
163	oils
	26 Total flavonoids in uninfested and infested tomato leaves
163	after 24hours of plant extract and essential oils