

Ain Shams University Faculty of Women for Arts, Science & Education Zoology Department

The possible protective effect of stem cells on hypoxia model induced by NaNO₂ on male albino rats

Thesis submitted for the degree of Master of Histology and Histochemistry (M.Sc.) in zoology

By

Manal Abdulrahim Saleh Abomahara

Supervisors

Prof. Dr. Nadia H. Ismail

Prof. Dr. Laila A. Rashed

Prof. of Embryology & Vertebrates,
Department of Zoology,
Women's faculty of Arts, science &
Education, Ain Shams University

Prof. of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University

Ass.prof. Amany A. Osman

Ass.prof. Elham H. A. Ali

Ass.prof. of Histology &
Histochemistry
Department of Zoology,
Women's faculty of Arts, science
& Education, Ain Shams
University

Ass.prof. of Physiology,
Department of Zoology,
Women's faculty of Arts, science
& Education, Ain Shams
University

Ain Shams University
Faculty of Women for Arts, Science & Education
Zoology Department

APPROVAL SHEET

Name: Manal Abdulrahim Saleh Abomahara

Title: The possible protective effect of stem cells on hypoxia model induced

by NaNO₂ on male albino rats

Scientific degree: M.Sc. Degree in Zoology (Histology and Histochemistry)

This thesis has been approved by:

Signature

Prof. Dr. Abdel Karim I. M. El-Sayed

Prof. of Animal Physiology, Head of Department of Animal Production.

Prof. Dr. Shadia M. Kadry

Prof. of Histology & Histochemistry /Department of Zoology, Women's College for Arts, science & Education, Ain Shams University.

Prof. Dr. Nadia H. Ismail

Prof. of Embryology & Vertebrates/ Department of Zoology, Women College for Arts, science & Education, Ain Shams University.

Dr. Amany A.Osman

Ass. Prof. of Histology & Histochemistry /Department of Zoology, Women's College for Arts, science & Education, Ain Shams University.

Dr. Elham H. A. Ali

Ass.prof. of Physiology /Department of Zoology, Women's College for Arts, science & Education, Ain Shams University.

Date of Discussion:

Approval date:

Faculty council approval:

University council approval:

Ain Shams University Faculty of Women for Arts, Science & Education Zoology Department

QUALIFICATION

Name: Manal Abdularhim Saleh Abomahara

Scientific Degree: Bachelor of Science

Department: Zoology

College of Science

University: Alzytona University - Libya

Graduation: 2008

سورة البقرة الآية: ٣٢

ACKNOWLEDGEMENT

First and foremost, thanks to **ALLAH**, the most beneficial and merciful for helping me to bring this work to light.

I am greatly honored to express my deepest thanks, gratitude and respect to **Prof. Dr. Nadia Hussein Ismail,** Professor of Embryology & Vertebrates, Department of Zoology, Women's faculty of Arts, science & Education, Ain Shams University, for her keen supervision, valuable advice and great help to finish this work.

My deepest thanks and appreciation go to Ass.prof. Amany Abd Alhameid osman, Ass. Professor of Histology & Chemohistology, Department of Zoology, Women's faculty of Arts, science & Education, Ain Shams University, for her keen supervision, valuable advice and great help to finish this work.

No words can express my profound thanks to **Ass.prof. Elham Hassan Ahmed,** Ass. Professor of Physiology, Department of Zoology, Women's faculty of Arts, science & Education, Ain Shams University, for her careful supervision, excellent guidance and continuous encouragement.

I am also thankful to **Prof. Dr. Laila Ahmed Rashed,** Professor of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, for her kind guidance and supervision.

I also wish to express my deep thanks to all my senior staff and my colleagues in the Zoology department for their help and support.

Finally, no words can express my deep thanks and appreciation to my **family** for their continuous support and outstanding encouragement during this work.

List of Contents

Contents	Page
1-Introduction	1
Aim of the Work	7
2-Review of Literature	
2.1- Sodium nitrite induced hypoxia	8 11
2.1.1- Biochemistry studies	11
2.1.2- Histological studies	15
2.2- Sodium nitrite induced hypoxia effect on liver:	17
2.2.1- Biochemistry studies	17
2.2.2- Histological studies	20
2.3- Sodium nitrite induced hypoxia effect on lung:	
2.3.1- Biochemistry studies	
2.3.2- Histological studies	
2.4- Sodium nitrite induced hypoxia effect on testes:	
2.4.1- Biochemistry studies	23
2.4.2- Histological studies	
2.5-Treatment of mesenchymal stem cell	
3-Materials and Methods	
3.1-Experimental animals	
3.2-Housing of the animals	

3.3-Management of animals	32
3.4- Toxic chemical	33
3.5-Isolation, propagation, identification and labeling	34
of bone marrow-derived MSCs from rats	
3.5.1-Isolation and propagation of BM- derived MSCs	34
from rats	
3.5.2- Identification of BM-derived MSCs from rat:	35
3.5.3-Labeling of MSCs with PKH26	35
3.6-Experimental design	40
3.7-Biochemical investigations	41
3.7.1-Determination of nitric oxide (NO)	41
3.7.2-Determination of malondialdhyd (MDA)	42
3.7.3-Evaluation of DNA fragmentation percentage	43
3.7.4-Determination of Catalase activity (CAT)	43
3.7.5-Determination of Total Antioxidant Activity	
(TAA)	43
3.8-Microscopical Studies	44
3.8.1-Light microscope preparations	44
3.8.2-Transmission Electron Microscopy (TEM)	
preparations	45
3.9-Statistical analysis	45
4-Results	46
4.1 - Biochemical investigation	

4.1.1- Liver	46
Total nitric oxide (NO) content, Malondialdehyde (MDA)	
content and DNA fragmentation percentage (DNA F %)	
Catalase activity (CAT) and Total Antioxidant Activity	
(TAA)	
4.1.2- Lung	56
Total nitric oxide (NO) content, Malondialdehyde (MDA)	
content and DNA fragmentation percentage (DNA F%)	
Catalase activity (CAT) and Total Antioxidant Activity	
(TAA)	
4.1.3-Testes	67
Total nitric oxide (NO) content, Malondialdehyde (MDA)	
content and DNA fragmentation percentage (DNA F %)	
Catalase activity (CAT) and Total Antioxidant Activity	
(TAA)	
4.2 - Histological investigation	78
4.2.1-Histological examination of liver	78
4.2.2- Histological examination for lung	93
4.2.3- Histological examination for testes	106
4.3-The ultra structural investigations for liver of rat	122
4.4-MSCs labeling with PKH dye and confermation of	122
homing of MSCs into the rat tissues	128

5-Discussion	131
5.1-Effect of toxic dose of sodium nitrite on oxidative	
stress marker	132
5.1.1-Effect of toxic dose of sodium nitrite on liver	133
5.1.2-Effect of toxic dose of sodium nitrite on lung	140
5.1.3-Effect of toxic dose of sodium nitrite on testes:	144
5.2- The effect of mesenchymal stem cells on hypoxia	
model	147
5.3-Histological investigation induced by sodium	150
nitrite and MSCs treatment	
5.3.1- Liver	150
5.3.2- Lung	157
5.3.3- testes	162
5.3.4-Ultra structural investigation of the liver rat	167
Conclusion	171
Recommendations	172
Summary	173
References	183

List of Abbreviations

ADP	Adenosine diphosphate
ADSCs	Adipose derived stem cells
ATP	Adenosine triphosphate
CAT	Catalase
CRP	c-reactive protein
DNA F%	DNA fragmentation percentage
GCA	Germ cell apoptosis
GPx	glutathione peroxides
GR-	Glucocorticoid receptor-
GSH-Px	glutathione peroxidase
GSHR	Glutathione-Disulfide human Reductase
НН	Hypoxic hypoxia
HI	Hypoxic-ischemic
HIF	Hypoxia-inducible factor
HIV	Human immunodeficiency virus
HNE	4-hydroxynon-2-enal
IL-1	Interleukin-1
IR	ischemia/ reperfusion
MCP-1	Monocyte chemoattractant protein-1
MDA	Malondialdehyde
MSCs	Mesenchymal stem cells