

Thesis

Submitted for Partial Fulfillment of M.D. Degree in Clinical & Chemical Pathology

BY

Dr. Manal Mohamed Mahmoud Makhlouf

(M.B., B.Ch., M.Sc.)
Assistant Lecturer of Clinical & Chemical Pathology
Faculty of Medicine, Cairo University

Supervised by

Prof. Dr. Nehad Mahmoud El-Sheemy

Professor of Clinical & Chemical Pathology Faculty of Medicine Cairo University

Asst. Prof. Mona Salah El-Din Hamdy

Assistant Professor of Clinical & Chemical Pathology Faculty of Medicine Cairo University

Asst. Prof. Nahla Mohamed Leheta

Assistant Professor of Clinical & Chemical Pathology Faculty of Medicine Cairo University

Faculty of Medicine
Cairo University
2006

يسم الله الرحمن الرحيم

فالوا سيطلك إلى المراحكيم الحكيم

بسم الله الرحمن الرحيم

لله الرحمن الرحيم قالوا سبحانك لا علم لنا إلا ما علمتنا إنك أنت العليم الحكيم صدق الله العظيم

سورة البقرة الآبة ٣٢

Acknowledgment

First and foremost thanks to Allah The most beneficial and merciful

Words will never be able to express my deepest gratitude to all those who helped me to make this work possible

I would like to express my sincere appreciation, deepest feeling of gratitude, greatest love and respect to Prof. Dr. Nehad Mahmoud El-Sheemy, Professor of Clinical and Chemical Pathology, Faculty of Medicine, Caira University for her continuous encouragement, advice, close supervision, kind help and valuable guidance throughout this work.

I am especially grateful to Asst. Prof. Mona Salah El-Din Kamdy, Assistant Professor of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University for her great efforts, patience, meticulous supervision, kind guidance, unlimited support and for the time she freely gave for guiding me throughout this work.

I would like to thank Asst. Prof. Nahla Mohamed Leheta, Assistant Professor of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University for her support and great help.

I extend my sincere gratitude to Dr Naha Kosny Shaheen, Lecturer of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University whose generous contribution and advise has been of great help.

Special thanks to all my professors and colleagues for their great help and support.

Abstract

Vascular endothelial growth factor (VEGF) is one of the most potent and specific positive regulators involved in angiogenesis. The activity of VEGF is mediated by interaction with high affinity class III receptor tyrosine kinases (RTKs), expressed on most endothelial cells, which are VEGFR-1 (FLT-1), VEGFR-2 (KDR) and VEGFR-3 (FLT-4).

VEGF and its receptors may play a very important role not only in angiogenesis but also in leukemogenesis. Their expression on leukemic cells may elucidate its role as an autocrine promoter of malignant cell proliferation in acute leukemia whether myeloblastic or lymphoblastic and in other hematologic malignancies as they trigger proliferation, survival and migration of malignant hematopoietic cells. Their expression may have clinical relevance and important role as risk and prognostic factors in acute leukemia. They may be useful as predictive test for treatment outcome in acute leukemia patients.

Key Words:

VEGF, FLT-1, KDR, Acute leukemia

			Clinical history			Clinical examination			
Case No.	Age (years)	Sex	Fatigue	Bleeding tendency	Fever	Gum hypertrophy	Liver enlargement	Spleen enlargement	Lymph node enlargement
1	22	М	+	-	+	-	+	+	-
2	12	М	+	+	-	-	-	-	-
3	40	F	+	+	-	-	+	+	-
4	35	М	-	-	-	-	+	+	-
5	30	F	+	+	-	-	+	+	-
6	7	М	-	+	-	-	-	•	-
7	8	М	ı	+	-	-	-	-	-
8	27	F	-	+	•	-	-	-	-
9	45	М	+	-	-	-	+	+	-
10	5	F	-	+	-	-	-	-	-

M = Male F = Female

+ = Present - = Absent

Master Sheet of Laboratory Data and Diagnosis of the Control Group

Coos		СВС		
Case No.	Hb (g/dl)	TLC (x10³)/cmm	Plts (x10³)/cmm	Diagnosis
1	8.6	2.4	87	Hypersplenism
2	9.5	12.8	6	ITP
3	5.6	14.6	70	Hypersplenism
4	10.4	9	96	Hypersplenism
5	7.9	3.5	75	Hypersplenism
6	10.9	10	15	ITP
7	13.6	7.6	50	ITP
8	11.6	4.9	35	ITP
9	9.2	3.9	80	Hypersplenism
10	11.0	8.2	30	ITP

Master Sheet of VEGF, FLT-1 and KDR Expression of the Control Group

Case No.	VEGF	VEGFR-1 (FLT-1)	VEGFR-2 (KDR)	β-actin
1	Negative	Negative	Negative	Positive
2	Negative	Negative	Negative	Positive
3	Negative	Negative	Negative	Positive
4	Negative	Negative	Negative	Positive
5	Negative	Negative	Negative	Positive
6	Negative	Negative	Negative	Positive
7	Negative	Negative	Negative	Positive
8	Negative	Negative	Negative	Positive
9	Negative	Negative	Negative	Positive
10	Negative	Negative	Negative	Positive

List of Abbreviations

Abbreviation	The Full Term
aa	Amino acid
ABL	Abelson strain of murine leukemia virus
AL	Light chain amyloid
ALL	Acute lymphoblastic leukemia
AML	Acute myeloblastic leukemia
AMM	Agnogenic myeloid metaplasia
ANLL	Acute non lymphocytic leukemia
Apaf-1	Apoptotic protease activating factor-1
APL	Acute promyelocytic leukemia
Ara-C	Cytosine arabinoside
Arg	Arginine
Asp	Aspartate
ATL	Adult T cell leukemia/ lymphoma
Bcl-2	B cell lymphoma-2
BCR	Breakpoint cluster region
bFGF	Basic fibroblast growth factor
BM	Bone marrow
BMSCs	Bone marrow stromal cells
bp	Base pair
C-ALL	Common acute lymphoblastic leukemia
cAMP	Cyclic adenosine monophosphate
CBC	Complete blood count
CBFbeta	Core binding factor beta
CD	Cluster of differentiation
CEPs	Circulating endothelial progenitor cells
CI	Confidence interval
CLL	Chronic lymphocytic leukemia
CML-BP	Chronic myelogenous leukemia- blastic phase
с-Мус	c-Avian Myelomatosis gene
CNS	Central nervous system
Crk	Cytoplasmic regulated kinase
CSF	Cerebrospinal fluid
Cyto Ig	Cytoplasmic immunoglobulin
del	Deletion
DLB-CL	Diffuse large B cell lymphoma

Abbreviation	The Full Term
DMSO	Dimethysulfoxide
DNA	Deoxyribonucleic acid
dNTPs	Deoxynucleoside triphosphates
DTT	Dithiothreitol
DW	Distilled water (RNase-free water)
ECM	Extracellular matrix
EDTA	Ethylene diamine tetra-acetic acid
EGF	Epidermal growth factor
EGIL	European group for the immunological classification of leukemia
ERK	Extracellular signal regulated kinase
FAB	French-American-British classification
FAK	Focal adhesion kinase
FISH	Fluorescence in situ hybridization
FL	Fas ligand
FLK-1	Fetal liver kinase-1
FLT-1	Fms-like tyrosine kinase-1
G-CSF	Granulocyte colony stimulating factor
Glu	Glutamine
Grb2	Growth factor binding protein 2
GTPase	Guanine triphosphatase
GVHD	Graft-versus-host disease
Hb	Hemoglobin
HCL	Hydrochloric acid
НСРТРА	Human cytoplasmic protein tyrosine phosphatase
HGF	Hepatocyte growth factor
HIF-1	Hypoxia inducible factor-1
His	Histidine
HL	Human leucocyte
HLA	Human leucocyte antigen
HSCs	Hematopoietic stem cells
HSP 90	Heat shock protein 90
HTLV-1	Human T- cell leukemia virus-1
i.t.	Intrathecal
IGF-1	Insulin growth factor-1
IL	Interleukin
Inv	Inversion
ITP	Immune thrombocytopenic purpura
KDa	Kilodalton
KDR	Kinase domain region

Abbreviation	The Full Term
LDH	Lactic dehydrogenase
LN	Lymph node
LPA	Lysophosphatic acid
LPAAT	Lysophosphatidic acid acyltransferase
Lys	Lysine
MAPK	Mitogen activated protein kinase
M-CSF	Macrophage colony stimulating factor
MDR	Multidrug resistance
MDS	Myelodysplastic syndromes
MEK	MAP kinase / EFK Kinase
MFC	Multiparameter flowcytometry
mg	Milligram
Mgcl ₂	Magnesium chloride
MIC	Morphologic, immunologic and cytogenetic
ml	Milliliter
MLL	Mixed lineage leukemia
MM	Multiple myeloma
mM	Millimole
MMPs	Matrix metalloproteinases
MoAb	Monoclonal antibody
MPD	Myeloproliferative diseases
MRD	Minimal residual disease
mRNA	Messenger ribonucleic acid
MTS	Multiple tumor suppressor
Mtx	Methothrexate
MVD	Microvessel density
MYH11	Smooth muscle myosin heavy chain
NCK	Nucleoplasmin cytoplasmic kinase
$NF_K\beta$	Nuclear factor kappa beta
NHL	Non-Hodgkin's lymphoma
OR	Odds ratio
P53	Protein 53 kilodalton
PB	Peripheral blood
PCR	Polymerase chain reaction
PDGF	Platelet-derived growth factor
PECAM	Platelets endothelial cells adhesion molecules
PI3K	Phosphatidyl inositol 3-kinase
PKC	Protein kinase C
PLC-γ	Phospholipase C-gamma

Abbreviation	The Full Term
PlGF	Placenta growth factor
Plts	Platelets
PML	Promyelocytic leukemia
PTEN	Penta erythritol tetranitrate
PTK	Protein tyrosine kinase
P-value	Probability value
RARalpha	Retinoic acid receptor alpha
Ras	Murine sarcoma virus
Ras GAP	Ras GTPase activating protein
RNA	Ribonucleic acid
rpm	Round per minute
RTKs	Receptor tyrosine kinases
RT-PCR	Reverse transcriptase polymerase chain reaction
SCK	Stress cytoplasmic kinase
SD	Standard deviation
SDF	Stromal cell derived factor
SHP	Src homology phosphatase
SIg	Surface immunoglobulin
STAT	Signal transducer and activator of transcription
SU	Sugen
t	Translocation
TdT	Terminal deoxynucleotidyl transferase
TGF-β	Transforming growth factor-beta
TK	Tyrosine kinase
TLC	Total leucocyte count
TNF	Tumor necrosis factor
μ1	Microliter
μM	Micromole
UV-β	Ultraviolet-beta
VEGF	Vascular endothelial growth factor
VEGFR	Vascular endothelial growth factor receptor
VHL	Von Hippel-Lindau
VLA	Very late antigen
VPF	Vascular permeability factor
VRAP	VEGFR-associated protein
WBCs	White blood cells
WHO	World Health Organization

List of Figures

Figure #	Description	Page
Figure (1)	Proposal for an algorithm at diagnosis and for follow up studies in AML	16
Figure (2)	Regulation of VEGF expression	54
Figure (3)	VEGF effects on hematopoiesis	56
Figure (4)	A) Interactions of VEGF family members with their receptors, B) VEGF-A mediates its activity via VEGFR-1 and VEGFR-2	58
Figure (5)	Signaling pathways activated by VEGF	64
Figure (6)	SU5416 activity in AML	69
Figure (7)	Tropic response to angiogenic molecules in hematologic malignancies: paracrine and autocrine stimulation of progenitor cells by angiogenic growth factors	77
Figure (8)	VEGF paracrine and autocrine effect in acute leukemias	79
Figure (9)	Statistical comparison between the three studied groups; AML, ALL and control as regard VEGF, FLT-1 and KDR positive expression	115
Figure (10)	Statistical comparison between the three studied groups; AML, ALL and control as regard VEGF expression	115
Figure (11)	Statistical comparison between the three studied groups; AML, ALL and control as regard FLT-1 expression	116
Figure (12)	Statistical comparison between the three studied groups; AML, ALL and control as regard KDR expression	116
Figure (13)	Sex distribution of VEGF positive AML patients	119
Figure (14)	Statistical comparison between VEGF positive and negative AML patients as regard their clinical data	119
Figure (15)	Statistical comparison between VEGF positive and negative AML patients as regard FAB classification	123
Figure (16)	Statistical comparison between VEGF positive and negative AML patients as regard CD14	123
Figure (17)	Statistical comparison between FLT-1 positive and negative AML patients as regard CD34	129

Figure #	Description	Page
Figure (18)	Statistical comparison between FLT-1 positive and negative AML patients as regard CD14	129
Figure (19)	FAB classification of KDR positive AML patients	135
Figure (20)	Statistical comparison between KDR positive and negative AML patients as regard cytogenetic abnormalities	135
Figure (21)	Treatment outcome of AML patients in relation to VEGF, FLT-1 and KDR expression	138
Figure (22)	Statistical comparison between VEGF positive and negative ALL patients as regard FAB classification	144
Figure (23)	Statistical comparison between VEGF positive and negative ALL patients as regard cytogenetic abnormalities	144
Figure (24)	Statistical comparison between FLT-1 positive and negative ALL patients as regard FAB classification	150
Figure (25)	Statistical comparison between FLT-1 positive and negative ALL patients as regard immunophenotyping	150
Figure (26)	Immunophenotyping of KDR positive ALL patients	156
Figure (27)	Cytogenetic abnormalities of KDR positive ALL patients	156
Figure (28)	Treatment outcome of ALL patients in relation to VEGF, FLT-1 and KDR expression	159
Figure (29)	Statistical comparison between AML and ALL patients as regard group A, group B and group C expression	162
Figure (30)	RT-PCR analysis of VEGF, FLT-1(VEGFR-1) and KDR (VEGFR-2) expression in patients with acute leukemia	168
Figure (31)	RT-PCR analysis of VEGF, FLT-1 and KDR expression in patients with acute leukemia	169
Figure (32)	RT-PCR analysis of VEGF, FLT-1 and KDR expression in patients with acute leukemia	170

List of Tables

Table #	Description	Page
Table (1)	Conditions predisposing to the development of acute myeloblastic leukemia	7
Table (2)	Classification of AML	10
Table (3)	Cytochemistry for AML	12
Table (4)	Immunophenotyping of AML	13
Table (5)	Prognostic factors in acute myeloblastic leukemia	17
Table (6)	FAB classification of ALL	28
Table (7)	Proposed WHO classification of ALL	29
Table (8)	Immunological classification of ALL	31
Table (9)	Common cytogenetic abnormalities in ALL	33
Table (10)	The MIC classification of ALL	34
Table (11)	Cytochemistry for ALL	37
Table (12)	Immunological classification of ALL	38
Table (13)	Prognostic factors in acute lymphoblastic leukemia	40
Table (14)	Therapy of ALL	42
Table (15)	Angiogenic molecules	47
Table (16)	Hematologic malignancies with angiogenic components	49
Table (17)	Therapeutic approaches targeting tumor angiogenesis and tumor cell growth	66
Table (18)	Independent prognostic relevance of angiogenic markers in hematologic malignancies	78
Table (19)	The reagents are Titan one tube RT-PCR	98
Table (20)	The reaction components for master mix 1	100
Table (21)	The reaction components for master mix 2	101
Table (22)	Clinical characteristics of the patients at diagnosis and the control group	107
Table (23)	Laboratory characteristics of the patients at diagnosis and the control group	110