The Study of Some Properties of Silorane Composites as Compared to those of Conventional Resin Composites.

Thesis
Submitted to the faculty of Dentistry
Ain-Shams University,
in partial fulfillment of the requirements for the Master
Degree in Dental Biomaterials.

By
Tarek Ahmed Ahmed
B.D.S 2002
Demonstrator in the Biomaterials department
Faculty of dentistry
Ain-Shams University

Ain-Shams University 2010

Supervisors

Prof. Dr. Ghada Atef Alian

Professor and Head of Biomaterials Department Faculty of Dentistry Ain- Shams University

Dr. Amr Sherif Fawzy

Lecturer of Biomaterials
Dental Biomaterials Department
Faculty of Dentistry
Ain-Shams University

Ain-Shams University 2010

List of Contents

Subject	Page
INTRODUCTION	1
REVIEW OF LITERATURE	
1- Resin-based restorative composites.	4
1.1. Historical background.	4
1.2. Composition.	5
1.3. Classifications.	8
1.4. General properties.	10
2- Water sorption and solubility of resin-based restorative composites.	11
2.1. Water sorption.	12
2.2. Water solubility.	14
3- Strength properties of resin-based restorative composites.	15
3.1 Tensile strength.	16
3.2 Flexural strength.	17

4-	Fra	acture toughness of resin-based restorative	19
	con	nposites.	
	4.1	Overview.	19
	4.2	Modes of fracture.	20
	4.3	Methods for testing fracture toughness.	21
5-	Pol	ymerization shrinkage and stresses of resin-	
	base	ed restorative materials.	23
	5.1	Overview.	23
	5.2	Phases of polymerization shrinkage.	25
	5.3	Origin of stress in polymerizing dental composite.	25
	5.4	Factors involved in the development of	
		polymerization shrinkage stress in resin-based	
		composites.	27
		5.4.1 Volumetric shrinkage of the composite due to polymerization.	28
		5.4.2 Visco-elastic behavior.	30
		5.4.3 Restriction imposed on composite shrinkage.	31
	5.5	Methods for measuring polymerization shrinkage.	33
		5.5.1 Dilatometry.	33
		5.5.2 Optical method.	34
		5.5.3 The bonded disk method.	34
		5.5.4 Linometer.	34

	5.0	stra	in.	35
		5.6.1	Force transducer (Tensilometer).	35
		5.6.2	Photo-elastic analysis.	36
		5.6.3	Finite element analysis.	37
		5.6.4	Computational micromechanics.	38
		5.6.5	Ring slitting method.	38
		5.6.6	Strain gauges.	38
	5.7	Strate	egies to reduce polymerization shrinkage.	40
		5.7.1	Reduction of reactive sites per unit volume.	40
		5.7.2	The use of alternative curing techniques.	41
		5.7.3	Attempts done to control polymerization rate.	43
		5.7.4	The use of low-elastic modulus liners as stress-	
			breaking layers.	44
		5.7.5	Experimental attempts to modify the	
			composition of resin-based composites.	45
6-	Sile	oranes	S.	
	6.1.	Over	view.	50
	6.2.	Comp	position.	52
		6.2.1.	The silorane resin.	52
		6.2.2.	The initiating system.	52
		6.2.3.	The fillers.	53
		6.2.4.	The silane layer.	54

AIM OF THE STUDY.	55
MATERIALS AND METHODS.	56
RESULTS.	72
DISCUSSION.	82
SUMMARY AND CONCLUSIONS.	92
REFERENCES.	96
ARABIC SUMMARY.	

List of Contents

Subject	Page
INTRODUCTION REVIEW OF LITERATURE	1
1- Resin-based restorative composites.	4
1.5. Historical background.	4
1.6. Composition.	5
1.7. Classifications.	8
1.8. General properties.	10
2- Water sorption and solubility of resin-based restor	ative
composites.	11
2.1. Water sorption.	12
2.2. Water solubility.	14
3- Strength properties of resin-based restorative com	posites. 15
3.1 Tensile strength.	16
3.2 Flexural strength.	17

4-	Fra	cture 1	toughness of resin-based restorative composites.	19
	4.1	Over	view.	19
	4.2	Mode	es of fracture.	20
	4.3	Meth	ods for testing fracture toughness.	21
5-	Poly	meriz	ation shrinkage and stresses of resin-based	
	rest	orativ	e materials.	23
	5.1	Over	view.	23
	5.2	Phase	es of polymerization shrinkage.	25
	5.3	Origi	n of stress in polymerizing dental composite.	25
	5.4	Facto	rs involved in the development of polymerization	
		shrin	kage stress in resin-based composites.	27
		5.4.1	Volumetric shrinkage of the composite due to	
			polymerization.	28
		5.4.2	Visco-elastic behavior.	30
		5.4.3	Restriction imposed on composite shrinkage.	31
	5.5	Meth	ods for measuring polymerization shrinkage.	33
		5.5.1	Dilatometry.	33
		5.5.2	Optical method.	34
		5.5.3	The bonded disk method.	34
		5.5.4	Linometer.	34

5.6	Meth	ods for measuring polymerization stress and str	ain.35		
	5.6.1	Force transducer (Tensilometer).	35		
	5.6.2	Photo-elastic analysis.	36		
	5.6.3	Finite element analysis.	37		
	5.6.4	Computational micromechanics.	38		
	5.6.5	Ring slitting method.	38		
	5.6.6	Strain gauges.	38		
5.7	Strat	egies to reduce polymerization shrinkage.	40		
	5.7.1	Reduction of reactive sites per unit volume.	40		
	5.7.2	The use of alternative curing techniques.	41		
	5.7.3	Attempts done to control polymerization rate.	43		
	5.7.4	The use of low-elastic modulus liners as stress-			
		breaking layers.	44		
	5.7.5	Experimental attempts to modify the composition of	f		
		resin-based composites.	45		
Siloranes.					
6.1.	Over	view.	50		
6.3.	Com	position.	52		
	6.3.1.	The silorane resin.	52		
	6.3.2.	The initiating system.	52		
	6.3.3.	The fillers.	53		

6-

6.2.4. The silane layer.	54
AIM OF THE STUDY.	55
MATERIALS AND METHODS.	56
RESULTS.	72
DISCUSSION.	82
SUMMARY AND CONCLUSIONS.	92
REFERENCES.	95
ARABIC SUMMARY.	

Lists of Tables

]	Page
Table (1)	Description of the two materials used in the study	56
Table (2)	Mean and standard deviation values of the degree of expansion, shrinkage strains after 40 seconds and shrinkage strains after 340 seconds for both Z250 and P90	73
Table (3)	Mean and standard deviation values of water sorption and solubility, diametral compression test, flexural strength and fracture toughness for both Z250 and P90	76

List of Figures

		Page
Figure (1)	Chemical formula of Bis-GMA	6
Figure (2)	Chemical formula of TEGDMA	6
Figure (3)	Chemical formula of UDMA	7
Figure (4)	Structure of siloxane, oxirane and silorane	50
Figure (5)	Photoinitating system for cationic cure	53
Figure (6)	Light curing of an unpolymerized specimen inside the mold with the strain gauge in place to monitor the polymerization strains	59
Figure (7)	The Teflon mold used for the preparation of the specimens for water sorption and solubility testing	61
Figure (8)	The mold used for the preparation of the specimens for tensile strength testing	64
Figure (9)	The experimental setup used for tensile strength testing	65
Figure (10)	The mold used for preparation of the specimens for the flexural strength testing	66

Figure (11)	The experimental setup used for flexural strength testing	68
Figure (12)	The mold used for the preparation of the specimens for fracture toughness testing	69
Figure (13)	The experimental setup used for fracture toughness testing.	70
Figure (14)	Representative curves of the variation in the polymerization strains vs. recording time, as measured by The strain gauge, for both of the microhybrid resin-based restorative composite (Z250) and the silorane-based restorative composite (P90)	72
Figure (15)	Box & whisker plot for the mean and standard deviation values of the degree of expansion in µm for Z250 and P90 at the beginning of polymerization	74
Figure (16)	Box & whisker plot for the mean and standard deviation values of the polymerization shrinkage strain in µm for Z250 and P90 after 40 seconds of polymerization	75
Figure (17)	Box & whisker plot for the mean and standard deviation values of the polymerization shrinkage strain in µm for Z250 and P90 after 340 seconds of polymerization	75
Figure (18)	Box & whisker plot for the mean and standard deviation values of water sorption test in µgm/mm ³ for Z250 and P90	77

Figure (19)	Box & whisker plot for the mean and standard deviation values of water solubility test in μ gm/mm ³ for Z250 and			
	P90	78		
Figure (20)	Box & whisker plot for the mean and standard deviation values of diametral compression test for tension in MPa			
	for Z250 and P90	79		
Figure (21)	Box & whisker plot for the mean and standard deviation values of flexure strength in MPa for Z250 and P90	80		
Figure (22)	Box & whisker plot for the mean and standard deviation			
	values of fracture toughness in MPa. $M^{1/2}$ for Z250 and			
	P90	81		

Introduction