The Effect Of Assisted Mechanical Ventilation On Patient-Ventilator Asynchrony

An Essay

Submitted For Partial Fulfillment of Master Degree in Intensive

Care

By

Ahmed Abd-el Hameed Samrah

M.B.B.CH.

Under supervision of

Prof Dr. Ahmed abd-el Aala Al-Shawarby

Professor of Anesthesia and Intensive care Faculty of Medicine-Ain Shams University

Prof Dr. Noha Mohammad El- Sharnouby

professor of Anesthesia and Intensive care Faculty of Medicine -Ain Shams University

Dr.Mai Mohsen Abdel-Aziz

Lecturer of Anesthesia and Intensive care Faculty of Medicine -Ain Shams University

> Faculty of Medicine Ain Shams University 2015

سورة البقرة الآية: ٣٢

Thanks first and last to **ALLAH** as we owe Him for His great care, support and guidance in every step in our life.

I would like to express my deep gratefulness to Prof. Dr. Ahmed abd-el Aala Al-Shawarby, Professor of anesthesia and intensive care Faculty of Medicine - Ain Shams University, for his concern, his guidance and continuous encouragement. I consider myself very fortunate to work under his supervision.

I am grateful to Prof Dr. Noha Mohammad El-Sharnouby, Professor of anesthesia and intensive care Faculty of Medicine - Ain Shams University, for her generous and continuous help and valuable suggestions as well as her desire to achieve perfection. Her great help was very impressive and her meticulous reading and enormous assistance should be appreciated.

I am also grateful to Dr. Mai Mohsen Abdel-Aziz, Lecturer of anesthesia and intensive care Faculty of Medicine -Ain Shams University who devoted her time, effort and experience to facilitate the production of this work.

I must also express my thanks to all my family, my dear wife, my lovely daughter & my colleagues who supported me in this essay Ahmed Abd-el Hameed Samrah

Contents

Subject	page
Acknowledgment	III
List of abbreviations	V
List of figures	VIII
List of tables	X
Introduction	1
Aim of work	4
Chapter 1 : Pulmonary anatomy and physiology	5
Chapter 2: Assisted mechanical ventilation modes	39
Chapter 3 : Patient-ventilator asynchrony and effects of assisted mechanical ventilation on it	89
Summary	129
References	132
Arabic summary	153

List Of Abbreviations

Abb.	Full Term
2,3 DPG	2,3 Diphosphoglycerate
AAN	American Association Of Neurologists
ACMV	Assist-Control Ventilation
AI	Asynchrony Index
ALI	Acute Lung Injury
APRV	Airway Pressure Release Ventilation
ARDS	Acute Respiratory Distress Syndrome
As	Surface Area Of The Membrane
ASV	Adaptive Support Ventilation
BIPAP	Biphasic Positive Airway Pressure
Cdyn	Dynamic Compliance
Cl	Lung Compliance
CMV	Continuous Mandatory Ventilation
CNS	central nervous system
COPD	Chronic Obstructive Pulmonary Disease
CPAP	Continuous Positive Airway Pressure
CSF	Cerebrospinal Fluid
Cstat	Static Compliance
D	Gas Diffusion Coefficient
DP	Partial Pressure Difference Of The Gas

Abb.	Full Term
EAdi	Electromyographic Activity Of The Diaphragm
EMG	Electromyography
ERV	Expiratory Reserve Volume
ET	Endotracheal
EVT	Exhaled Tidal Volum
FEF	Forced Expiratory Flow
FEV1	Forced Expiratory Volume Of Air Exhaled In 1second
FRC	Functional Residual Capacity
FVC	Forced Vital Capacity
Hb	Hemoglobin
HFV	High- Frequency Ventilation
IBW	Ideal Body Weight
IC	Inspiratory Capacity
ICP	Intra Cranial Pressure
ICU	Intensive Care Unit
IMV	Invasive Mechanical Ventilation
IRV	Inspiratory Reserve Volume
MW	Molecular Weight
NAVA	Neurally Adjusted Ventilatory Assist
NICE	National Institute For Health And Clinical Excellence
NIV	Noninvasive Ventilation
NIV	Non-Invasive Ventilation
L	

Abb.	Full Term
NPPV	Noninvasive Positive-Pressure Ventilation
PAV	Proportional-Assist Ventilation
PCV	Pressure-Controlled Ventilation
PEEP	Positive End Expiratory Pressure
PEEPi	Intrinsic PEEP
PIP	Peak Inspiratory Pressure
Pplat	Plateau Pressure
PSV	Pressure-Support Ventilation
PVA	Patient-Ventilator Asynchrony
PVBCs	Patient-Ventilator Breath Contributions
PVD	Patient-Ventilator Dyssynchrony
Raw	Airway Resistance
RBCs	Red Blood Cells
RF	Respiratory Failure
RV	Residual Volume
SIMV	Synchronised Intermittent Mandatory Ventilation
T	Membrane Thickness
TLC	Total Lung Capacity
VC	Vital Capacity
VCV	Volume-Controlled Ventilation
Vgas	Volume Of Gas Diffusig Across A Membrane Per Minute
Vt	Tidal Volume
WOB	Work Of Breathing

List of figures

Figure No.	Title	Page No.
1	The lateral wall of the nasal cavity	7
2	The Common mechanism of airway obstruction in an unconscious patient	9
3	Anterolateral view of the larynx	10
4	Cartilages of larynx and upper end of trachea	11
5	Endotracheal tube in right main bronchus	13
6	Acinus region showing the alveolar ducts and a cutaway of the alveolar	14
7	Alveolar capillary membrane consisting of four layers	15
8	Pulmonary arteries & veins	16
9	Spirometry measures lung volume	19
10	the three blood flow zones of the lung	27
11	Oxygen-hemoglobin Dissociation Curve	31
12	CO2 dissociation curves	33
13	Control Of Breathing	36
14	Frontal and lateral views of the three types of NIV masks	49
15	The distinction between <i>target</i> and <i>cycle</i> varible	60

Figure No.	Title	Page No.
16	Assist-Control ventilation	64
17	Synchronized Intermittent Mandatory Ventilation	65
18	Causes of patient ventilator asynchrony	67
19	Concept of NAVA	75
20	Electrode positioning during NAVA	78
21	Features of NAVA	79
22	Airway pressure, flow, and volume waveforms for proportional-assist ventilation	85
23	Flow asynchrony	97
24	Flow–volume loop in pressure support ventilation	98
25	Pressure–volume loop: flow starvation	99
26	Clinical signs of asynchrony	105
27	Artist's depiction of a mechanically ventilated patient experiencing respiratory distress	107
28	Trigger delay and cycling-off error	119
29	Percentage of synchronous, dyssynchronous and asynchronous breaths for the different ventilator modes	120

List Of Tables

Table No.	Title	Page No.
110.		110.
1	Causes of hypercapnic respiratory failure	44
2	Causes of hypoxemic respiratory failure	46
3	Indications and contraindications for NIV in acute care	50
4	Control variables in different modes of ventilation	55
5	The trigger variable	57
6	The limit variable	58
7	The cycle variable	59
8	The Baseline variable	61
9	Classification Of Breath Types	61
10	Classification of modes based on the type of breaths	62
11	Advantages and disadvantages of the Volume- Targeted Assist-Control Mode	63
12	Advantages and disadvantages of the SIMV mode	66
13	Advantages and disadvantages of the PSV mode	67
14	Advantages and disadvantages of the CPAP mode	68
15	Characteristics Of The Proportional Assist Ventilation Mode	86
16	Type of patient-ventilator asynchrony	95

INTRODUCTION

Mechanical ventilation can be a life-saving for many patients. In between the two extremes of complete and no ventilatory support, both the patient and the machine contribute to the ventilatory work. Ideally, gas delivery of the ventilator would perfectly match patient demand. This patient-ventilator interaction depends on the response of the ventilator to patient respiratory effort and also how the patient responds to the ventilator delivered breath. The interaction between patient and the ventilator is frequently suboptimal, And that patient ventilator phenomenon asynchrony is (Epstein, a common *2011*).

patient-ventilator asynchrony is one of causes of ineffective ventilation, lung overdistention, impaired gas exchange, increased work of breathing, discomfort. It patient also predisposes and respiratory muscles dysfunction and leads to of sedation which excessive use increases the duration of ventilatory support, and interferes with weaning trials (*Pierson*, 2011).

categorized Asynchrony can be into four general types: flow asynchrony; trigger asynchrony; cycle asynchrony; and mode asynchrony. With flow asynchrony, the delivery pattern gas from ventilator does not match the inspiratory pattern of the patient. Thus, when the patient's inspiratory flow exceeds the ventilator's delivered flow, patient effort work of breathing increase stimulating increased respiratory rate. This type of asynchrony is much more common during volume ventilation than pressure ventilation (Kacmarek et al., 2015).

Modes that adjust the amount of assistance delivered by ventilator proportionally e.g., Neurally Adjusted Ventilatory Assist (NAVA) and Proportional Assist Ventilation (PAV) have been designed to overcome weakness of PSV modes and markedly reduce asynchrony (*de la Oliva et al,2012*).

These modes do not control ventilatory pattern of the patient. The patient is allowed to select the pattern that his respiratory center considers appropriate. Neither pressure, volume, flow, nor time is set by the ventilator but all are controlled by the patient. So, these modes follow the lead of patient but again "do not force" a ventilatory pattern result in

decreased asynchrony compared to the classic modes of ventilatory support (*Kacmarek et al*, 2011).

The main methods that decrease asynchrony are:

- (1) NAVA and PAV both can prevented hyperinflation produced by overassistance
- (2) NAVA and PAV restored an equal level of breathing-pattern variability
- (3) according to the level of assistance, NAVA and PAV induce a good patient-ventilator synchrony than PSV (*Schmidt et al.*, 2015).

Aim of the work

The aim of this essay is to cast light on assisted mechanical ventilation modes and their role in reducing patient-ventilator asynchrony.

ANATOMY AND PHYSIOLOGY OF RESPIRATORY SYSTEM