

Role of Dual energy CT in diagnosis and preoperative staging of gastric carcinoma

Essay

Submitted for partial fulfillment of Master
Degree
In Radiodiagnosis

By

Mohammed Zakaria Mahmoud M.B.B. Ch.

Under The Supervision Of

Prof. Dr. Hanan Mohammed Hanafy

Professor of Radio diagnosis Faculty of Medicine, Ain Shams University

Dr. Aya Yassin Ahmed

Assistant professor of Radiodiagnosis Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2016

Abstract

Introduction: Gastric cancer is one of the most common cancers worldwide with approximately 989,600 new cases and 738,000 deaths per year, accounting for about 8 percent of new cancers. A good prognosis for patients with this disease requires choosing the correct therapy, and making the right therapeutic choice requires accurate preoperative staging. The recent development of multi-detector row CT (MDCT) scanner has allowed imaging with a thinner section collimation, translating into increased quality on transverse computed tomography scans and multiplanar reconstruction, contributing to the improved accuracy of TNM staging. Nowadays MDCT has been widely used in preoperative staging of gastric cancer. However there are still some controversial problems.

Aim of the Work: The aim of the study is to evaluate the clinical utility of dual energy spectral CT (DEsCT) in detection and pre-operative staging of gastric carcinoma.

Methodology: Gastric carcinoma is still considered the second most frequent cause of cancer death worldwide, though the incidence and mortality decreased remarkably over the former 50 years.

Conclusion: Stomach cancer has a multifactorial etiology whether dietary, genetic, environmental and behavioral where Helicobacter pylori (H. pylori) infection plays the major role in the pathogenesis. On the other hand; balanced diet comprising fruits and vegetables, improved sanitation and hygiene, screening and treatment of H. pylori infection, and follow-up of precancerous lesions are considered preventive tools

Keywords: Role of Dual energy CT in diagnosis and preoperative staging of gastric carcinoma.

وقل اعْمَلُوا فَسَيَرَى اللهُ عَمَلُوا فَسَيَرَى اللهُ عَمَلُوا فَسَيَرَى اللهُ عَمَلُوا فَسَيَرَى اللهُ عَمَلُكُمْ وَرَسُولُهُ وَالدُّؤْمِنُونِ عَمَلُكُمْ وَرَسُولُهُ وَالدُّؤْمِنُونِ

ةروس ةبوتلا مقر ةي لأا 105

First of all I thank God who blessed me in all my steps.

I would like to express my deepest appreciation and respect to Prof. Dr. Hanan Mohammed Hanafy, Professor of Radio diagnosis, Faculty of Medicine-Ain Shams University for her priceless effort, generous guidance and patience.

I am grateful to **Dr.** Aya Yassin Ahmed, Lecturer of Radio diagnosis, Faculty of medicine-Ain Shams University for his help.

I would like to thank my precious family, friends and colleagues for believing in me and their continuous support.

List of Contents

Chapter	Page
Introduction & Aim of the work	1
Anatomy of the stomach	4
Pathology of gastric carcinoma	18
Technique of dual energy CT	33
Role of Dual energy CT in diagnosis and preoperative staging of gastric carcinoma	48
Illustrative cases	70
Summary & Conclusion	73
References.	75
Arabic Summary	1

List of Abbreviations

ABBREVIATION	NAME
AD	Autosomal dominant
AMEIs	advanced monoenergetic images
BMI	Body mass index
CC	Costal cartilage
CNR	Contrast noise ratio
C.T	Connective tissue
DEsCT/DECT	Dual energy spectral CT
DJ flexure	Duodeno-jejunal flexure
DS-DECT	Dual-source dual-energy
EMR	Endoscopic mucosal resection
EUS	Endoscopic ultrasound
FAP	Familial adenomatous polyposis
FDA	Food and Drug Administration
FOV	Field of view
GC	Gastric carcinoma
GDA	Gastroduodenal artery
GEJ	Gastro-oesophageal junction
GERD	Gastro-oesophageal reflux disease
HNPCC	Hereditary non-polyposis colorectal cancer
HU	Hounsfield unit
LGA	left gastric artery
MAC	Mucinous adenocarcinoma
MD	Material decomposition images
MDCT	Multi-detector computed tomography
MRI	Magnetic resonance imaging
nIC	Normalized iodine concentration
PEIs	poly-energetic images
PET	Positron emission tomography
PV	Portal vein
RGA	Right gastric artery
SMV	Superior mesenteric vein
SRC	Signet ring cell carcinoma
SS-DECT	Single-source dual-energy CT

<u>List of Figures</u>

Figure	Title		
- (Chapter 2 " Anatomy of the stomach"		
2.1	Effect of body type (bodily habitus) on disposition and shape of stomach.	4	
2.2	The parts of the stomach.	5	
2.3	The peritoneal connections attached to lesser curvature	7	
2.4	Anterior relations of the stomach, viewed from behind	8	
2.5	Posterior relations of the stomach	9	
2.6	The valve-like structure formed by the angle of the wall at the cardiac orifice	10	
2.7	Diagram showing the principal regions of the interior of the stomach and the microstructure of tissues and cells within its wall.	12	
2.8	Arterial supply to the stomach	14	
2.9	Veins of stomach, duodenum, and spleen.		
2.10	Lymph node stations of A, the stomach		
2.11	Distribution of the vagal nerves to the stomach	17	
- C	hapter 3 "Pathology of gastric carcinoma"		
3.1	Age-standardized incidence rates of stomach cancer, by sex and region of world; 2008 estimates	19	
3.2	Proposed multistep pathway in the pathogenesis of gastric cancer	25	
3.3	Helicobacter pylori.	27	
3.4	The Bormann gross classification system for gastric carcinoma	28	
3.5	Advanced gastric carcinoma: pathologic features.	28	
3.6	Tubular adenocarcinoma, microscopic appearance	30	
3.7	Micropapilary adenocarcinoma	31	
3.8	Mucinous adenocarcinoma	32	
3.9	Signet ring cell carcinoma	32	

- C	hapter 4 "Technique of dual energy CT"	
4.1	Graphics show the difference between dsDECT (a) and ssDECT (b).	36
4.2	X-ray spectra–simulated spectra based on Monte Carlo techniques.	40
4.3	Technical approaches for DECT	43
4.4	Example of technologist role in positioning.	43
4.5	Diagrams of DECT post-processing algorithms.	47
	hapter 5 "Role of Dual energy CT in diagnosis and eoperative staging of gastric carcinoma"	1
5.1	Female patient with Infiltrative-ulcerous cancer of the distal part of the stomach with spread to the stomach body.	50
5.2	Magnetic resonance imaging of gastric cancer in a 71-year-old female patient	54
5.3	Abdomen PET CT demonstrates a subtle circumferential wall thickening involving the gastric cardia and gastroesophageal junction	56
5.4	T2 gastric cancer in a 66-year-old female patient.	58
5.5	T3 gastric cancer in a 63-year-old male patient	59
5.6	T4a gastric cancer in a 72-year-old male patient	59
5.7	A prominent lymph node in a 57-year-old male patient with advanced gastric cancer.	61
5.8	Selecting the best contrast-noise-ratio (CNR) for displaying gastric cancer with GSI Viewer analysis tool	62
5.9	T1a cancer (54 yrs., male). AM40 keV coronal image shows abnormal strong enhancement of the inner mucosal layer with an intact low-density-stripe layer (arrow) in the gastric angle in the portal phase. The lesion was classified as T1a by two reviewers. The lesion is not clear in AM 50 keV and is invisible in either AM60 keV or AM80 keV. The lesion is invisible in M40 keV, M50 keV because of the high image noise, which affects diagnosis. The lesion is also invisible in M60 keV, M80 keV and PEIs	63
5.10	48-year old man with stage T3N2 gastric adenocarcinoma	65

5.11	DEsCT images of a 54-year-old man with mucinous adenocarcinoma in the gastric antrum of mucosal layer invasion	66
5.12	48-year old man with stage T3N2 gastric adenocarcinoma	67
5.13	62-year-old man with signet ring cell carcinoma obtained with dual energy spectral scan mode.	68
- C	hapter 6 "Illustrative cases"	
6.1	DEsCT images of a 63-year-old man with adenocarcinoma in the gastric antrum of serosa layer invasion.	70
6.2	A 60 yrs. female that has been diagnosed with T1b gastric carcinoma as been evident on PEI and Dual energy CT examination with Monoenergetic and advanced monoenergetic algorithms.	71

List of tables

Table	Title	Page
3.1	Comparison of cardia and distal gastric adenocarcinoma	20
3.2	Risk factors for development of gastric cancer	22
4.1	Atomic Numbers and K-Edge values for elements found in the human body and various contrast materials	35
4.2	Comparison of Dual- and Single-Source Dual-Energy CT Systems	36
5.1	Alarm features suggestive of gastric cancer	48
5.2	TNM-staging of gastric cancer, American Joint Committee on Cancer 7th manual	51-52

INTRODUCTION

Gastric cancer is one of the most common cancers worldwide with approximately 989,600 new cases and 738,000 deaths per year, accounting for about 8 percent of new cancers (*Bohle et al.*, 2011). A good prognosis for patients with this disease requires choosing the correct therapy, and making the right therapeutic choice requires accurate preoperative staging (*Kwon*, 2011). The recent development of multi-detector row CT (MDCT) scanner has allowed imaging with a thinner section collimation, translating into increased quality on transverse computed tomography scans and multiplanar reconstruction, contributing to the improved accuracy of TNM staging (*Li et al.*, 2012). Nowadays MDCT has been widely used in preoperative staging of gastric cancer. However there are still some controversial problems.

Regarding the T-staging, the results from previous reports on the usefulness of CT for T-staging of gastric cancer have shown large variations (overall accuracy rates of 43–82% (*Shimizu et al., 2005*). Over-diagnosis sometimes happens when the interface of the lesion and peripheral tissue is blurred by an inflammatory reaction.

Aside from tumor location and depth of infiltration, lymph node status is of particular interest in the pretherapeutic staging of tumors, especially to establish different therapeutic strategies. In early gastric cancer the presence or absence of lymph-node metastases is a critical determinant of whether less invasive treatment, such as endoscopic mucosal resection, can be performed (*Jemal and Bray*, 2011).

In advanced carcinoma, lymph node status is an important prognostic factor not only regarding long-term survival, but also planning the optimal