

FAULT LOCATION IDENTIFICATION FOR OVERHEAD RADIAL DISTRIBUTION NETWORKS

By

Mohamed Abd-Alrahman Ibrahim Gabr

A thesis submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

In

Electrical Power and Machines Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT

FAULT LOCATION IDENTIFICATION FOR OVERHEAD RADIAL DISTRIBUTION **NETWORKS**

By

Mohamed Abd-Alrahman Ibrahim Gabr

A thesis submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

In

Electrical Power and Machines Engineering

Under supervision of

Prof. Dr. Mahmoud Ibrahim

M. Gilany

Associate Prof. Dr. Doaa Khalil

Gilany

Ibrahim

Faculty of Engineering, Cairo University

Faculty of Engineering, Cairo University

Assistant Prof. Dr. Eman Saad Ahmed

Electrical Engineering Department 2 mm Sand

Faculty of Engineering, Kafrelshiekh University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY **GIZA, EGYPT**

2017

FAULT LOCATION IDENTIFICATION FOR OVERHEAD RADIAL DISTRIBUTION NETWORKS

By

Mohamed Abd-Alrahman Ibrahim Gabr

A thesis submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

In

Electrical Power and Machines Engineering

Approved by the	
Examining Committee	M. Gilany
Prof. Dr. Mahmoud Ibrahim Gilany	Thesis main advisor
Associate Prof. Dr. Doaa Khalil Ibrahim	(Member)
Prof. Dr. Hussein Magdy Zein El-Din-	Internal Examiner
Prof. Dr. Moustafa Mohammed Eissa	External Examiner

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT

Faculty of Engineering, Helwan University

2017

Engineer: Mohamed Abd-alrahman Ibrahim Gabr

Date of Birth: 1 / 10 / 1988
Nationality: Egyptian

E-mail: Mohamed_gabr32@yahoo.com

Phone.: +201061702821

Address: Kotour – Gharbia – Egypt

Registration Date: 01 / 10 / 2011 Awarding Date: / / 2017 Degree: Master of Science

Department: Electrical Power and Machines Engineering

Supervisors:

Prof. Dr. Mahmoud Ibrahim Gilany Associate Prof. Dr. Doaa Khalil Ibrahim Assist. Prof. Dr. Eman Saad Ahmed (Kafrelshiekh University)

Examiners: Prof. Dr. Mahmoud Ibrahim Gilany

Associate Prof. Dr. Doaa Khalil Ibrahim Prof. Dr. Hussein Magdy Zein El-Din

Prof. Dr. Moustafa Mohammed Eissa (Helwan University)

TITLE OF THESIS: Fault Location Identification for Overhead Radial Distribution Networks

Key Words: Impedance-based Fault Location, Load Variation, Modal Transformation, Radial Distribution Systems.

Summary:

This thesis proposes an analytical impedance-based fault location scheme for distribution systems. The approach is based on voltage and current measurements extracted at only one-end feeding substation. Modal transformation is implemented to decompose the coupled three phase equations due to mutual effects into decoupled ones, and hence directly calculating fault distance in each section without iterative processes. The proposed approach considers various aspects of distribution systems: intermediate loads along the feeder, tapped laterals and sub-laterals at various nodes, time varying loads, and unbalanced operations.

The proposed algorithm is extensively investigated on a real 11 kV distribution system, South Delta electricity sector, Egypt using MATLAB environment. Different cases are studied considering various loading conditions, varied fault resistance values and different fault types. The achieved results ensure the effectiveness of the proposed fault locator irrespective of fault conditions. Besides, the robustness of the proposed scheme against unbalanced loading, network topology change and non-homogenous network sections is also confirmed.

This work is gratefully dedicated to:

My dear parents, my lovely Wife, and my little son abd-alrahman

ACKNOWLEDGMENTS

Foremost, all praise be to **ALLAH**, who enabled me to accomplish this work successfully.

Then, I would like to express my sincere gratitude and appreciation to my supervisors; Prof. Dr. Mahmoud Ibrahim Gilany, Associate Prof. Dr. Doaa Khalil Ibrahim (Cairo University) and Assist. Prof. Dr. Eman Saad Ahmed (Kafrelshiekh University), for their valuable advice and suggestions that improved the whole thesis and also their patience and encouragement throughout the period of the research.

Furthermore, I would like to express my deepest gratitude and thanks to all members in Electrical Engineering Department, Faculty of Engineering, Kafrelsheikh University for their great support during my study. A special thanks to Dr. Ragab El-sehiemy (Kafrelshiekh University) and Dr. Nagy Elkalashy (Menoufiya University) for their insightful discussions, and kind help.

Finally, I can't forget to express my deep thanks and sincere gratitude to my dear parents and my lovely wife for their patience, strong encouragement and kind support.

TABLE OF CONTENTS

ACKNOWLEDGMENTS	I
TABLE OF CONTENTS	II
LIST OF TABLES	V
LIST OF FIGURES	VI
LIST OF SYMBOLS AND ABBREVIATIONS	IX
ABSTRACT	XII
CHAPTER (1): INTRODUCTION	1
1.1. BACKGROUND	1
1.2. FAULTS IN POWER SYSTEMS	1
1.2.1. Fault Types	1
1.2.2. Fault Resistance	2
1.3. POWER DISTRIBUTION NETWORKS	2
1.4. FAULT LOCATION ON POWER SYSTEMS	4
1.5. PROBLEM STATEMENT	5
1.6. Thesis Objectives	7
1.7. THESIS ORGANIZATION	7
CHAPTER 2: LITERATURE REVIEW FOR FAU	LT LOCATION
TECHNIQUES IN DISTRIBUTION NETWORKS	9
2.1. Transmission Line Fault Location Methods	9
2.1.1. Impedance based Fault Location	9
2.1.2. Traveling Wave based Fault Location	10
2.1.3. Artificial Intelligence based Fault Location	11
2.2. DISTRIBUTION SYSTEM FAULT LOCATION METHODS	11
2.3. IMPEDANCE-BASED FAULT LOCATION METHODS FOR	R DISTRIBUTION SYSTEMS.
	12
2.3.1. Method of A. Girgis	14
2.3.2. Method of J. Zhu	
2.3.3. Method of R. Das	
2.3.4. Method of M. S. Choi	20
2.3.5. Method of R. H. Salim	22

_	REMENTS OF FAULT LOCATION2
	ION LINES PARAMETERS26
3.1.1. Series Impedance of C	Overhead Lines
	Overhead Lines
3.2. Phasor Estimation Usin	G RECURSIVE DFT29
3.3. FAULT CLASSIFICATION	32
3.4. MODAL TRANSFORMATION	36
CHAPTER 4 : PROPOSED F.	AULT LOCATION TECHNIQUE FOR
DISTRIBUTION NETWORK	S
4.1. Proposed Methodology	FOR SINGLE LINE TO GROUND FAULT LOCATION. 38
4.2. Proposed Methodology	FOR LOCATING ALL TYPES OF FAULTS EXCEPT
SLG	42
4.3. Compensation of Loads	VARIATION44
4.4. Compensation of Load 7	ΓABS AND LATERALS45
4.5. OVERALL DESCRIPTION OF	THE PROPOSED SCHEME PROCEDURE46
CHAPTER 5 : SIMULATION	RESULTS AND DISCUSSION4
5.1. SIMULATED SYSTEM	49
5.2. SIMULATION RESULTS	52
5.2.1 Fault Resistance Effect	et
5.2.2 Locating Tapped Late	rals Faults55
5.2.3 Loads Variation Effec	t56
5.2.4 Effect of Topology Ch	nange and Sections Non homogeneity
5.3. COMPARISON OF THE PROP	OSED SCHEME WITH PUBLISHED RESEARCH WORKS.
	60
CHAPTER 6 : CONCLUSION	NS AND SUGGESTED FUTURE WORK 6
6.1. Conclusions	66
6.2. LIMITATIONS OF PROPOSED	TECHNIQUE67

6.3.	SUGGEST	IONS FOR FUTURE WORK	67
REFE	RENCES	j	68
PUBL	ISHED V	VORK	75
APPE	NDIX A	: FAULTED CIRCUIT INDICATORS I	NTEGRATION
INTO	PROPOS	SED SCHEME	76

LIST OF TABLES

Table 2.1: Selected voltage and current for various fault types
Table 4.1: Key table for SLG fault distance formula coefficients41
Table 4.2: Key table of distance formula coefficients for all types of faults except
SLG44
Table 5.1: Lengths of different sections for the simulated system
Table 5.2: Rated loads for the simulated system
Table 5.3: Line parameters of different sections for the simulated system51
Table 5.4: Fault resistance effect on the accuracy of the proposed fault location
method
Table 5.5: Effect of load variation compensation method on the accuracy of estimated
fault location
Table 5.6: Comparing the effectiveness of the proposed method versus the load
variation compensation method reported in [76] for locating remote high
impedance faults
Table 5.7: Comparison between the proposed method and some other fault location
techniques
Table A.1: Expected fault paths and load impedances based on FCIs statuses for the
system shown in Figure A.1

LIST OF FIGURES

Figure 1.1: A simple protection scheme for a distribution network	3
Figure 1.2: Operation of impedance based fault locator for faulted transmission line	e 5
Figure 1.3: A single line diagram of a real distribution feeder.	6
Figure 2.1: Operation of single/both ends measurements of fault locator for fau	lted
transmission line	10
Figure 2.2: Classification of fault location methods in transmission line	11
Figure 2.3: An automated faulted circuit indicator [104]	13
Figure 2.4: Fault circuit indicator (FCI) sensor used for underground cables	14
Figure 2.5: Single-line-to-ground fault	15
Figure 2.6: Radial distribution system	18
Figure 2.7: Sample section in distribution network and the load is concentrated at	the
end of the section	22
Figure 2.8: sample section of line with length Δx	23
Figure 3.1: Conductors and their images below the ground	27
Figure 3.2: Moving window operation	30
Figure 3.3: DFT algorithm schematic	30
Figure 3.4: Faults in a real 11 kV distribution system	31
Figure 3.5: Three phase current waveforms for SLG fault (a-g) at 1200 m f	rom
substation (at F_1)	31
Figure 3.6: Three phase currents RMS amplitude for SLG fault (a-g) at 1200 m f	rom
substation (at F_1)	32
Figure 3.7: Phase angle of three phase currents for SLG fault (a-g) at 1200 m f	rom
substation (at F_1)	32
Figure 3.8: Flowchart for determine the fault type and identify the faulted phases	33
Figure 3.9: Fault classification operation for SLG (b-g) fault at 2050 m f	rom
substation (at F_2)	34
Figure 3.10: Fault classification operation for three phase (a-b-c) fault at 2050 m f	rom
substation (at F_2)	35
Figure 3.11: Modal transformation decoupling	36
Figure 4.1: Single line to ground fault	38
Figure 4.2: Clarke modal circuit for single line to ground (a-g) faulted network [1]	[12]
	39

Figure 4.3: Configurations of other fault types 42
Figure 4.4: Clarke modal circuit for three phase fault [112] 43
Figure 4.5: An illustrative fault at X section in simple distribution system 46
Figure 4.6: Flowchart of proposed scheme procedure 48
Figure 5.1: The tested real 11 kV distribution system 50
Figure 5.2: Unbalanced current waveforms simulated at substation side at normal
operation 50
Figure 5.3: Fault resistance effects on distance estimation error for SLG fault (A-G)53
Figure 5.4: Fault resistance effects on distance estimation error for LL fault (A-B) 53
Figure 5.5: Fault resistance effects on distance estimation error for LLG fault (A-B-G)
53
Figure 5.6: Fault resistance effects on distance estimation error for LLL fault (A-B-C)
54
Figure 5.7: Fault resistance effects on distance estimation error for LLLG fault 54
Figure 5.8: Percentage error for locating different fault types on lateral 5-24 at fault
resistance of 50 Ω 55
Figure 5.9: Percentage error for locating different fault types on lateral 7-31 at fault
resistance of 50 Ω
Figure 5.10: Percentage error for locating different fault types on lateral 11-46 at fault
resistance of 50 Ω
Figure 5.11: Effect of 50% load variation on the accuracy of estimated fault location
at fault resistance of 0Ω 57
Figure 5.12: Effect of 75% load variation on the accuracy of estimated fault location
at fault resistance of 0Ω 57
Figure 5.13: Effect of 50% load variation on the accuracy of estimated fault location
at fault resistance of 50 Ω 57
Figure 5.14: Effect of 75% load variation on the accuracy of estimated fault location
at fault resistance of 50 Ω 58
Figure 5.15: Percentage error for locating LG and LLL faults on the main feeder for
modified system topology during disconnection the lateral 7-31 59
Figure 5.16: Percentage error for locating LG and LLL faults on the main feeder in
case of non-homogenous feeder sections 60
Figure 5.17: Comparison of the percentage error with Girgis [64], Salim [73] and
proposed for SLG and fault resistance of 0Ω 61

Figure	5.18:	Comparison of the percentage error with Girgis [64], Salim [73]	and
		proposed for SLG and fault resistance of 2 Ω	61
Figure	5.19:	Comparison of the percentage error with Girgis [64], Salim [73]	and
		proposed for SLG and fault resistance of 20 $\boldsymbol{\Omega}$	61
Figure	5.20:	Comparison of the percentage error with Girgis [64], Salim [73]	and
		proposed for LL and fault resistance of 0 Ω	62
Figure	5.21:	Comparison of the percentage error with Girgis [64], Salim [73]	and
		proposed for LL and fault resistance of 2 Ω	62
Figure	5.22:	Comparison of the percentage error with Girgis [64], Salim [73]	and
		proposed for LL and fault resistance of 20 Ω	62
Figure	5.23:	Comparison of the percentage error with Girgis [64], Salim [73]	and
		proposed for LLL and fault resistance of 0 Ω	63
Figure	5.24:	Comparison of the percentage error with Girgis [64], Salim [73]	and
		proposed for LLL and fault resistance of 2 $\boldsymbol{\Omega}$	63
Figure	5.25:	Comparison of the percentage error with Girgis [64], Salim [73]	and
		proposed for LLL and fault resistance of 20 $\boldsymbol{\Omega}$	63
Figure	A.1: \$	Sample of simple distribution network equipped with 3 FCIs	76
Figure	A.2: \$	Simplified network of that shown in Figure A.1	77

LIST OF SYMBOLS AND ABBREVIATIONS

• Symbols

ids Current distribution factor

 β_s Current distribution phase angle

d Distance to the fault point calculated from the beginning of the faulted

section

l Total length of the section

 $I_s = I_a, I_b, I_c$ Three phase source current

 I_o , I_1 , I_2 Zero, Positive, Negative sequence current

I_f Fault current

I_{fm} Modal fault current

 I_m Modal line current

 I_{lm} Modal load current

 V_m Modal bus voltage

 V_{fm} Modal fault point voltage

 V_o , V_1 , V_2 Zero, Positive, Negative sequence voltage

 R_f Fault resistance

 R_{Fg} Ground fault resistance

 Y_L Load admittance

 X_{app} Apparent reactance

 Z_{app} Apparent impedance

 $Z_{La,b,c}$ Three phase load impedance

 Z_{lm} Modal load impedance

 Z_m Modal section series impedance

 Z_{aa} , Z_{bb} , Self impedances for phases a, b, c

 Z_{ab} , Z_{bc} , Mutual impedances between phases a, b, c

 Z_0 , Z_1 , Z_2 Zero, Positive, Negative sequence impedance

 Z_{ii} , Z_{ij} Self and mutual impedances between phases i, j

T Modal transformation matrix

Destinated Estimated fault distance

Dactual Exact fault distance

 S_{ss} Pre-fault steady state apparent power

 S_{rated} Rated apparent power

γ Propagation constant of line

Z_C Characteristic impedance of line

rd Conductor radius

λ Flux linkage

 D_{ab}, D_{bc}, D_{bc} Distances between phases a, b, c

ω Angular frequency

 ρ Soil resistivity