

TRIBOLOGICAL AND RHEOLOGICAL CHARACTERISTICS OF MODIFIED CALCIUM GREASE WITH CARBON NANOTUBES AND GRAPHENE NANOSHEETS

By

Bahaa Mostafa Kamel Mehany Ahmed

A Thesis Submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

IN

MECHANICAL DESIGN AND PRODUCTION ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2017

TRIBOLOGICAL AND RHEOLOGICAL CHARACTERISTICS OF MODIFIED CALCIUM GREASE WITH CARBON NANOTUBES AND GRAPHENE NANOSHEETS

By

Bahaa Mostafa Kamel Mehany Ahmed

Under the Supervision of

Prof. Dr. Mahmoud EL-Sherbiny

Professor of Machine Design Mechanical Design and Production Faculty of Engineering, Cairo University

Prof. Dr. Kamal Ahmed Abed

Professor of Mechanical Engineering National Research Center

Prof. Dr. Mahmoud Abd-Rabou

Professor of Machine Design Mechanical Design and Production Faculty of Engineering, Cairo University

Dr. Alaa EL.Din Mohamed Abd El-hamid

Assistance Professor of Production Engineering and Printing Technology Akhbar El-Yom Academy

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2017

TRIBOLOGICAL AND RHEOLOGICAL CHARACTERISTICS OF MODIFIED CALCIUM GREASE WITH CARBON NANOTUBES AND GRAPHENE NANOSHEETS

By

Bahaa Mostafa Kamil Mehany

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY

IN MECHANICAL DESIGN AND PRODUCTION ENGINEERING

Approved by the Examining Committee

Prof. Dr. Mahmoud EL-Sherbiny

Prof. Dr. Kamal Ahmed Abed (National Research Center)

Prof. Dr. Tarek Abdel Sadek Osman

Prof. Dr. Waheed Yosry Ali (Minia University)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2017 Engineer's Name: Bahaa Mostafa Kamil Mehany Ahmed

Date of Birth: 1/10/1984

Nationality: Egyptian

E-mail: bahaa2004eg@yahoo.com

Phone: 01227004606

Address: Beni Suif – El-Fashin – Ahmed Orabi Street building 3

Registration Date: 1/10/2012

Awarding Date: 2017

Degree: Doctor of Philosophy

Department: Mechanical design and production Engineering

Prof. Mahmoud EL-Sherbiny

Prof. Kamal Ahmed Abed (National Research Center)

Prof. Mahmoud Abd-Rabou

Dr. Alaa EL.Din Mohamed (Akhbar El-Yom Academy)

Examiners:

Prof. Mahmoud EL-Sherbiny

Prof. Kamal Ahmed Abed (National Research Center)

Prof. Tarek Abdel Sadek Osman

Prof. Waheed Yosry Ali (Minia University)

Title of Thesis:

Tribological and Rheological Characteristics of Modified Calcium Grease with Carbon Nanotubes and Graphene Nanosheets

Key Words:

Carbon nanotubes, Graphene nano sheets, Tribological behavior, Rheological behavior, Calcium grease,

Summary:

The aim of this research is to study the influence of adding Multi- Walled Carbon Nanotube (MWCNTs) and graphene nano sheet (GNS) on the rheological behavior, tribological properties and thermal conductivity of calcium grease. The results show that the grease with CNTs and GNS exhibit good performance in anti-wear, friction reduction, load carrying capacity and extreme pressure properties with only 3% wt. The rheological behaviors were evaluated with a Brookfield. The results indicate increases stress and apparent viscosity.

Acknowledgements

Firstly, I would like to express my sincere gratitude to my advisor **Prof. Dr. Mahmoud EL-Sherbiny** for the continuous support of my Ph.D study and related research, for his patience, motivation, and immense knowledge. His guidance helped me in all the time.

I am particularity grateful to **Prof. Dr. Kamal abed** for his encouragement and valuable discussions which have been inspirational throughout the work.

I am also owe a heavy debt of gratitude **Prof**. **Dr. Mahmoud Abd-Rabou** for their special help and timely support to complete this work.

I cannot express enough thanks to my committee for their continued support and encouragement: **Prof. Dr. Mohamed El-Anwar** and **Dr. Mahmoud Attia.** I offer my sincere appreciation for the learning opportunities provided by my committee.

I would like to express my very great appreciation to **Dr. Alaa Mohamed** for his valuable and constructive suggestions during the planning and development of this research work. His willingness to give his time so generously has been very much appreciated.

This work could have been a distant dream if I did not get the moral encouragement and help of my family; they equally shared my success and failures with me.

Finally, I wish to acknowledge and express my deep gratitude to all those who helped me in presenting this work.

Dedication
I sincerely dedicate this work to my mother, father and my wife

Table of Contents

Page	e No
TABLE OF CONTENTS	i
LIST OF TABLES	v
LIST OF FIGURES	vi
NOMENCLATURE	ix
ABSTRACT	xi
CHAPTER 1: GREASE FUNDAMENTALS	
1.1 Introduction.	1
1.2 Advantages of Grease Lubrication	2
1.3 Disadvantages of Grease Lubrication.	3
1.4 Composition of Industrial Greases.	3
1.4.1 Base Oil	3
1.4.2 Thickener	3
1.4.3 Additives	4
1.5 Types of Greases.	5
1.5.1 Soap Greases	7
1.5.1.1 Calcium Grease	7
1.5.1.2 Calcium Complex Grease	7
1.5.1.3 Sodium Soap.	7
1.5.1.4 Lithium Soap.	8
1.5.1.5 Aluminum Soap	8
1.5.1.6 Aluminum Complex	8
1.5.1.7 Seldom Used Grease	8
1.5.2 Multi-Purpose Grease	9
1.5.3 Non Soap Greases.	9
1.5.3.1 Silica Gel.	9
1.5.3.2 Poly_urea	q

1.5.3.3 Polytetrafluoroethylene (PTFE)	9
CHAPTER 2: LITERATURE REVIEW	
2.1 Introduction	10
2.2 Literature Survey	10
CHAPTER 3: Carbon Nanotubes and Graphene Nanosheets	
3.1 History of Carbon Nanotubes.	21
3.2 type of Carbon Nanotubes (CNTs)	24
3.2.1 Single-walled carbon nanotubes (SWNTs)	24
3.2.2 Multi-walled carbon nanotubes	24
3.2.3 Nanohorns.	24
3.3 The Discovery of Graphene	25
3.4 Synthesis of Graphene Nanosheets	26
3.5 Different Types of Graphene Synthesis	27
3.5.1 Liquid Phase and Thermal Exfoliation	27
3.5.2 Synthesis on Silicon Carbide	27
3.5.3 Chemical Vapor Deposition (CVD)	27
3.6 Properties of Graphene	29
3.6.1 Density of Graphene	29
3.6.2 Optical Transparency of Graphene	29
3.6.3 Strength of Graphene	30
3.6.4 Thermal conductivity of Graphene	30
CHAPTER 4: EXPERIMENTAL PROCEDURES	
4.1 Introduction.	31
4.2 Overall Methodology	31
4.3 Experimental Methodology	31
4.3.1 Preparation of Graphene Nanosheets	31
4.3.1.1 Synthesis of Graphene Oxide (GO)	32

4.3.1.2 Stabilization of GO Suspension.	33
4.3.1.3 Synthesis of Graphene Nanosheets (GNS)	33
4.3.2 Multi Wall Carbon Nanotubes (MWCNT)	33
4.3.4 Characterizations of Carbon Nanotubes and Graphene Nanosheets	34
4.3.4 .1 X-Ray Diffraction (XRD)	34
4.3.4. 2 Scanning Electron Microscopy (SEM)	35
4.3.4. 3 Transmission Electron Microscope (TEM)	36
4.3.4. 4 Energy Dispersive X- Ray (EDX)	37
4.3.4. 5 High Resolution Transmission Electron	38
4.4 Preparation of Calcium Grease with Carbon Nano Tubes and Graphene Nanosheets	38
4.4.1 High Speed Homogenizer (SCILOGEX D500)	39
4.4.2 Friction and Wear Test	40
4.4.2.2 The Test Machine	41
4.4.2.3 Preparation of Friction and Wear Test	41
4.4.2.4 Procedure of Four Ball Tester (ASTM D4172)	41
4.4.3 Extreme Pressure Four Ball	43
4.4.4 Rheological Behavior of Grease	45
4.4.4.1 Analysis Using Viscometer (Brookfield DV-III Ultra Programmable	
Rheometer)	46
4.4.4.2 Penetration and Consistency	47
4.4.4.2.1 Test Principle	48
4.4.4.3 Dropping Point	48
4.4.5 Thermal Conductivity of Grease	49
4.4.5.1 Measurement of Thermal Conductivity	49
CHAPTER 5: RESULTS AND DISCUSSION	
5.1 Experimental Results	51
5.1.1 Structural Characterization of Carbon Nanotubes	51
5.1.2 Structural Characterization of Graphene Nanosheets	53
5.1.3 Analysis of Dispersion CNTs and GNS in Calcium Grease	55
5.1.4 Tribological Rehavior of Carbon Nanotube as an Additive on Calcium Grease	56

5.1.5 Analysis of Worn Surfaces affected by CNTs	59
5.1.6 EDX analysis of worm surface by CNTs additives	59
5.1.7 Rheological Behavior of Carbon Nanotubes as an Additive on calcium Grease	61
5.1.8 Effect of CNTs additives in Dropping Point	64
5.1.9 Effect of CNTs additives in penetration and Consistency of calcium grease	65
5.1.10 Effect of CNTs additives on Thermal Conductivity of Calcium Nanofluid	65
5.1.11 Tribological Behavior of Graphene Nanosheet as an Additive on Calcium Grease	67
5.1.12 Analysis of Worn Surfaces affected by GNS	68
5.1.13 EDX Analysis of Worm Surface by GNS Additives	71
5.1.14 Rheological Behavior Graphene Nanosheet as an Additive on Calcium Grease	71
5.1.15 Effect of GNS additives in dropping point	74
5.1.16 Effect of GNS additives in Penetration and Consistency of Calcium Grease	75
5.1.17 Effect of GNS Additives on Thermal Conductivity of Calcium Nanofluid	76
5.1.18 Comparison between CNT and GNS additives in Calcium Grease	76
CHAPTER 6: CONCLUSIONS AND FUTURE WORK	
6.1 Conclusions.	7 9
6.2 Future Work	80
REFERENCE	81

List of Tables

Pag	ge No
Table 1.1: Characteristics and Types of Greases	6
Table 3.1: Different Methods for Producing CNTs	23
Table 3.2: Comparison between single wall and multi wall carbon nano tubes	25
Table 3.3: Different Methods for Producing Graphene	29
Table 4.1: Properties of MWCNTs	33
Table 4.2: Properties of the Calcium Grease	39
Table 4.3: NLGI Grease Classification.	47
Table 5.1: The Maximum Non-seizure Load (P _B value) of Base Calcium Grease and 3wt.	
% GNS /Calcium Grease	67
Table 5.2: Comparison of All Weight Percentages of CNTs	77
Table 5.3: Comparison of All Weight Percentages of GNS	77

LIST OF FIGURES

P	Page No
Figure 1.1: General Composition of Grease	2
Figure 1.2: Industrial Greases	5
Figure 3.1: (a) Single-Wall CNT, (b) Double-Wall CNT and MWCNT	21
Figure 3.2: Chirality of CNT Depends on the Tube Axis.	22
Figure 3.3: TEM Images of SWCNTs.	24
Figure 3.4: TEM Images of MWCNTs	24
Figure 3.5: Single Wall Carbon Nanhorns (SWCNHs)	25
Figure 3.6: Quality vs. Price for Different Types of Graphene	28
Figure 4.1: Flow Diagram for Producing GO	32
Figure 4.2: Schematic Diagram of XRD Spectrometer	35
Figure 4.3: Schematic Diagram of SEM	36
Figure 4.4: Schematic Diagram of TEM.	37
Figure 4.5: Energy Dispersive X- Ray Microanalysis (EDX / EDS)	37
Figure 4.6: High Resolution Transmission Electron Microscopy	38
Figure 4.7: High Speed Homogenizer	40
Figure 4.8: Four Ball Wear Test Machine	40
Figure 4.9: Schematic Diagram of four-Ball Tribotester	42
Figure 4.10: Wear Scar on a Ball	43
Figure 4.11: Schematic Plot of Scar Diameter Versus Applied load	44
Figure 4.12: Shear Stress As A Function of Shear Rate For Several Kinds of Fluids	45
Figure 4.13: Schematic of Brookfield DV-III ultra	46
Figure 4.14: Cone Penetration of Lubricating Grease	47
Figure 4.15: Establishing Grease's Dropping Point	48
Figure 4.16: Measurement of the Dropping Point	49
Figure 4.17: KD2 Pro Thermal Properties Analyzer	50
Figure 5.1 : XRD Pattern of CNTs.	52
Figure 5.2: HRTEM Images of CNTs	52

Figure 5.3: Multi Walled Carbon Nanotube including 32 walls
Figure 5.4 : (a) X-ray Pattern of Graphene Oxide (b) TEM Image of the Produced Graphene Oxide
Figure 5.5: (a) X-ray Pattern of Graphene Nano sheets (b) TEM Image of GNS
Figure 5.6: HRTEM Image of Base Grease (a) and grease with (b) 0.5 (c) 1% (d) 2% (e) 3% CNTs
Figure 5.7 : Friction Coefficient and Wear Scar Diameter Measured for Different CNTs Concentration
Figure 5.8 : Friction Coefficient as a Function of Applied Load with the Lubrication of Base Calcium Grease and With Different CNTs Concentration
Figure 5.9 : Wear Scar as a Function of Applied Load with the Lubrication of Base Grease and with Different CNTs
Figure 5.10: SEM Morphologies of Wear Scar of Steel Balls Lubricated by: a) Calcium Grease, b) Containing, 1%, c) Containing 2% and d) Containing 3 wt. % CNTs/Calcium Grease Tested at 400 N for 60 min
Figure 5.11: EDX Spectrum of the Worn Scar of Steel Balls Lubricated by 3wt. % CNTs /Calcium Grease at 400 N for 60 min
Figure 5.12: Shear Stress Versus Shear Rate For base Grease and Different Concentration of MWCNTs
Figure 5.13: Apparent Viscosity versus Shear Rate for Base Grease and Different Concentration of MWCNTs
Figure 5.14: Apparent Viscosity versus Shear Rate at Different Temperature
Figure 5.15: Effect of Carbon Nanotubes Additive on Dropping Test
Figure 5.16: Effect of Carbon Nanotubes Additive on Penetration Test
Figure 5.17: Thermal Conductivity Ratio of Calcium Nanofluids as a Function of Volume Concentration of MWCNTs (0.5, 1, 2, 3, 4 wt. %)
Figure 5.18: Friction Coefficient and Wear Scar Diameter as a Function of Graphene Nanosheet Concentration (four balls, 1200 rpm, 400 N, 60 min)
Figure 5.19: Friction Coefficient as A function of Applied Load with The Lubrication of Base Grease and That Containing (0.5, 1, 2, 3 and 4 wt. %) of Graphene Nano sheets, (1200 rpm, 60 min)
Figure 5.20: Wear Scar Diameter As A Function of Applied Load with The Lubrication of Base Grease and That Containing (0.5, 1, 2, 3 and 4 wt. %) of GNS,
(1200 rpm, 60 min)
Figure 5.21: SEM Morphologies of Wear Scar of Steel Balls Lubricated by: a) Calcium Grease, b) containing 1%,,c) Containing 2% and d) Containing 3 wt. % GNS /Calcium Grease Tested at 400 N for 60 min

Figure 5.22: EDX Spectrum of the Worn Scar of Steel Balls Lubricated By 3 wt. % GNS	
/Calcium Grease	71
Figure 5.23: Shear Stress versus Shear Rate For base Grease and Different Concentration	
of GNS	72
Figure 5.24: Apparent Viscosity versus Shear Rate for Base Grease and Different	
Concentration of GNS	73
Figure 5.25: Apparent Viscosity versus Shear Rate at Different Temperature	74
Figure 5.26: Effect of Graphenen Nanosheets Additive on Dropping Test	75
Figure 5.27: Effect of Graphenen Nanosheets Additive on Penetration Test	75
Figure 5.28: Thermal Conductivity Ratio of Calcium Nanofluid as a Function of Volume Concentration GNS (0.5, 1, 2, 3, and 4 wt. %)	76

NOMENCLATURE

Spacing between diffracting planes, d Thermal conductivity Кe any integer n Constant heat rate applied to an infinitely long and small "line" source, are the q Changes in the temperature at times t1 and t2. Distance from the contact surface on the lower balls to the axis of rotation. r Frictional torque (N.m) T Time (S) t applied load in (N) \mathbf{W} Δф Temperature changes incident angle, θ wavelength of the beam λ friction coefficient μ