PROPAGATION OF CALLA (ZANTEDESCHIA SP.) PLANTS BY TISSUE CULTURE TECHNIQUE

By

NERMEEN EL-SAYED ABDUL-MONEEM ABDUL-QADER

B. Sc. Agric. Sc. (Horticulture), Ain Shams University, 1999 M.Sc. Agric. Sc. (Ornamental Plants), Ain Shams University, 2005

A thesis submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Agricultural Sciences (Ornamental Plants)

Department of Horticulture Faculty of Agriculture Ain Shams University

Approval Sheet

Propagation of Calla (*Zantedeschia* sp.) Plants by Tissue Culture Technique

By

NERMEEN EL-SAYED ABDUL-MONEEM ABDUL-QADER

B. Sc. Agric. Sc. (Horticulture), Ain Shams University, 1999 M.Sc. Agric. Sc. (Ornamental Plants), Ain Shams University, 2005

This Thesis for Ph.D. degree has been approved by:

Dr. Emam Mohamed S	Saber Nofal	
Prof. Emeritus of	Ornamental Plants, Faculty of Agricultu	re,
Khafr El Sheikh Un	niversity	
Dr.Hassan Mohamed l	Fadel El wakeel	
Prof. of Pomology l	Plants, Faculty of Agriculture, Ain Sham	S
University		
Dr. Sohair El-Sayed M	Iohamed Hassan	
Prof. Emeritus of	Ornamental Plants, Faculty of Agricultu	ıre,
Ain Shams Universi	sity	

Date of Examination: / / 2014

PROPAGATION OF CALLA (ZANTEDESCHIA SP.) PLANTS BY TISSUE CULTURE TECHNIQUE

By

NERMEEN EL-SAYED ABDUL-MONEEM ABDUL-QADER

B. Sc. Agric. Sc. (Horticulture), Ain Shams University, 1999 M.Sc. Agric. Sc. (Ornamental Plants), Ain Shams University, 2005

Under the supervision of:

Dr. Sohair El-Sayed Mohamed Hassan

Prof. Emeritus of Ornamental Plants, Department of Horticulture, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Ayman Kamal Ibrahim

Assistant Prof of Ornamental Plants, Department of Horticulture, Faculty of Agriculture, Ain Shams University

Dr. Faisal Mohamed Abdel-Aleam Saadawy

Head of Research Emeritus, Ornamental Plant and Landscape Design Research Department, Horticulture Research Institute, Agricultural Research Center

ACKNOWLEDGEMENT

First and foremost, I feel always indebted to Allah, the best beneficent and merciful God.

This work is dedicated to the souls of my father, my mother and Prof. Dr. Mahmoud Hashim, may Allah be merciful to them.

I would like to express my gratitude to **Prof. Dr. Sohair El-Sayed Mohamed Hassan**, Professor of Ornamentals, Faculty of Agriculture, Ain Shams University for suggesting the current study, her supervision, valuable guidance, kind support, continuous help during the whole work and revision of this manuscript.

Deep thanks to **Dr. Ayman Kamal Ibrahim**, Lecturer of Ornamental Plants, Faculty of Agriculture, Ain Shams University for his supervision, scientific guidance and sincere intentions.

Deep thanks are offered to **Prof.Dr. Faisal Mohamed Abdel-Aleam Saadawy**, Head Researcher Emeritus in the Horticulture Research Institute (HRI), Agriculture Research Center, Giza, for his supervision, scientific remarks, following up during all stages of laboratory work and the great efforts in writing, statistical analysis and financial support through the HRI.

I am deeply indebted to the Director of Tissue Culture Laboratory for all facilities and guidance I found in this lab.

Finally, I would like to thank all **my family** for their supporting me with love and encouragement. The least I can do is to dedicate this work to them.

I can't forget **my colleagues** and **friends** who offered me their help and encouragements. My best wishes for them.

ABSTRACT

Nermeen El-Sayed Abdul-Moneem: Propagation of Calla (*Zantedeschia sp.*) Plants by Tissue Culture Technique. Unpublished Ph.D.theses, Department of Horticulture, Faculty of Agriculture, Ain Shams University, 2014.

This work was carried out in the Tissue Culture Laboratory, Horticulture Research Institute, Agricultural Research Center, Giza, Egypt during the period from 2008 to 2013.

In-vitro produced explants of *Zantedeschia rehmannii* cv. Hot Cherry" were obtained from the Tissue Culture Laboratory of Zohriya Garden, where they were subcultured on MS medium supplemented with BA at 4 ppm. However, explants remained unresponsive, lost their green color and became pale. To solve this problem, the effect of N, Fe and Mg levels in MS Medium was investigated. Further experiments on multiplication, rooting and tuberization were carried out. Results of all these experiments could be briefed in the following.

Raising the level of NH₄NO₃ in MS medium to 175% of the original one resulted in the highest values of total number of shoots and total number of leaves and reasonable chlorophyll content.

It is much better to use MS medium with the normal levels of both Fe and Mg contents.

Using BA at 4 ppm in the multiplication stage proved to be the better choice as it in resulted the best number of shoots, total fresh weight of shoots and total number of leaves. Cytokinin-free media failed to produce any number of shoots at all.

Using IBA at 5 ppm in the rooting stage guaranteed the highest values in regard to number of roots, root length, fresh weight of roots and percentage of rooting, in addition to the least number of days to rooting.

Adjusting incubation temperature to 20 °C resulted in the highest number of mini-tubers when sucrose level was 60 g/l. On the other hand, raising incubation temperature to 25 °C gave rise to the heaviest fresh

weight of mini-tubers at 60 g/l sucrose and to the highest mini-tuber diameter at 70 g/l sucrose.

The highest values of number of shoots and total number of leaves were a result of using sucrose at 30 g/l and BA at 4 ppm, while the greatest number of mini-tubers and percentage of tuber formation was obtained when sucrose at 90 g/l and BA at 4 ppm were applied.

The highest records of shoot length, fresh weight of shoot, shoot diameter, number of leaves, number of mini-tubers, mean fresh weight of mini-tuber, mini-tuber diameter and chlorophyll content were obtained when 3 g/l of KNO₃ were added to MS medium. The quickest tuber formation took place when KNO₃ at 4 g/l was added.

Key Words: BA, FeSO4.7H2O, IBA, incubation temperature, KNO₃, MgSO4.7H2O, mini-tuber, MS medium, NH₄NO₃, tissue culture and *Zantedeschia*.

ABBREVIATIONS

BA, BAP: Benzyl adenine

DKW: Driver Kuniyuki Walnut

IAA: Indol-3-acetic acid IBA: Indol-3-butyric acid

Ki, Kin, KT:Kinetin

L2: Phillips and Collins medium

Meq: Milliequivalent

MS: Murashige and Skoog medium
MSB: Mitis salivarius bacitracin medium

NAA: Naphthalene acetic acid

N.B.: Nota beneTDZ: ThidiazuronWH: White's medium

WPM: Woody plant medium

	CONTENTS	Page
	LIST OF TABLES	v
	LIST OF FIGURES	viii
	LIST OF PLATES	xvi
	LIST OF ABBREVIATIONS	xvii
1.	INTRODUCTION	1
2.	REVIEW OF LITERATURE	6
3.	MATERIALS AND METHODS	15
4.	RESULTS AND DISCUSSION	19
	Experiment 1. Effect of level of NH ₄ NO ₃ in MS medium	19
	1– Effect of NH ₄ NO ₃ level in MS medium on number of	
	shoots	19
	2– Effect of NH ₄ NO ₃ level in MS medium on shoot length	20
	3– Effect of NH ₄ NO ₃ level in MS medium on total fresh	
	weight of shoots	21
	4- Effect of NH ₄ NO ₃ level in MS medium on total number	
	of leaves	21
	5- Effect of NH ₄ NO ₃ level in MS medium on chlorophyll	
	content (SPAD units)	22
	Experiment 2. Effect of FeSO ₄ .7H ₂ O levels in MS	
	medium on growth	26
	1- Effect of FeSO ₄ .7H ₂ O level in MS medium on number	
	of shoots	26
	2- Effect of FeSO ₄ .7H ₂ O level in MS medium on shoot	
	length	26
	3-Effect of FeSO ₄ .7H ₂ O level in MS medium on total	
	fresh weight of shoots	26
	4- Effect of FeSO ₄ .7H ₂ O level in MS medium on total	
	number of leaves	27
	Experiment 3. Effect of MgSO ₄ .7H ₂ O level in MS	30
	medium on growth	20
	1- Effect of MgSO ₄ .7H ₂ O level in MS medium on	
	propagules weight	30
	Experiment 4. Effect of cytokinin type, concentration and	

their interestion on moultiplication	22
their interaction on multiplication	33
1- Effect of cytokinin type, concentration and their	22
interaction on number of shoots	33
2- Effect of cytokinin type, concentration and their	
interaction on shoot length	41
3- Effect of cytokinin type, concentration and their	
interaction on total fresh weight of shoots	46
4- Effect of cytokinin type, concentration and their	
interaction on total number of leaves	50
Experiment 5: Effect of auxin type, concentration and	
their interaction on rooting	55
1- Effect of auxin type, concentration and their interaction	
on number of roots	55
2- Effect of auxin type, concentration and their interaction	
on root length	59
3- Effect of auxin type, concentration and their interaction	
on fresh weight of roots	63
4- Effect of auxin type, concentration and their interaction	
on root diameter	66
5- Effect of auxin type, concentration and their interaction	
on number of days to root formation	69
6- Effect of auxin type, concentration and their interaction	0)
on percentage of rooting	71
Experiment 6: Effect of incubation temperature,	/ 1
sucrose concentration and their interaction on mini-tuber	
formation	77
1 Effect of incubation temperature, sucrose concentration	77
and their interaction on number of mini-tubers	
2- Effect of incubation temperature, sucrose concentration	82
and their interaction on fresh weight of mini-tubers	-
3. Effect of incubation temperature, sucrose concentration	
and their interaction on mini-tuber diameter	87
Experiment 7: 1. Effect of sucrose and BA concentrations	
on tuber formation	92
1- Effect of sucrose and BA concentrations and their	92

interaction on number of shoots	
2- Effect of sucrose and BA concentrations and their	
interaction on shoot length	95
3- Effect of sucrose and BA concentrations and their	
interaction on total fresh weight of shoots	99
4- Effect of sucrose and BA concentrations and their	
interaction on shoot diameter	102
5- Effect of sucrose and BA concentrations and their	
interaction on total number of leaves	105
6- Effect of sucrose and BA concentrations and their	
interaction on number of mini-tubers	108
7-Effect of sucrose and BA concentrations and their	
interaction on total fresh weight of mini-tubers	113
8- Effect of sucrose and BA concentrations and their	
interaction on mini-tuber diameter	117
9. Effect of sucrose and BA concentrations and their	
interaction on percentage of tuber formation	120
Experiment 8: Effect of KNO ₃ level in MS medium on	
growth	125
1- Effect of KNO ₃ level in MS medium on shoot length	126
2- Effect of KNO ₃ level in MS medium on total fresh	
weight of shoot	126
3- Effect of KNO ₃ level in MS medium on shoot diameter	126
4- Effect of KNO ₃ level in MS medium on total number of	
leaves	127
5- Effect of KNO ₃ level in MS medium on number of	
mini-tubers	127
6- Effect of KNO ₃ level in MS medium on mean fresh	
weight of mini-tuber	128
7- Effect of KNO ₃ level in MS medium on mini-tuber	
diameter	129
8- Effect of KNO ₃ level in MS medium on chlorophyll	
content (SPAD units)	130
9- Effect of KNO ₃ level in MS medium on number of days	130

	to mini-tuber formation	
5.	SUMMARY and CONCLUSION	137
6.	REFERENCES	142
7.	ARABIC SUMMARY	139

LIST OF FIGURES

		page
Fig. (1)	Effect of NH ₄ NO ₃ level in MS medium on number	
	of shoots of Zantedeschia rehmannii cv. Hot	
	Cherry	22
Fig. (2)	Effect of NH ₄ NO ₃ level in MS medium on shoot	
	length (cm) of Zantedeschia rehmannii cv. Hot	
	Cherry	23
Fig. (3)	Effect of NH ₄ NO ₃ level in MS medium on total	
	fresh weight of shoots (g) of Zantedeschia	
	rehmannii cv. Hot Cherry	23
Fig. (4)	Effect of NH ₄ NO ₃ level in MS medium on number	
	of leaves of Zantedeschia rehmannii cv. Hot	
	Cherry	24
Fig. (5)	Effect of NH ₄ NO ₃ level in MS medium on	
	chlorophyll content (SPAD units) of Zantedeschia	
	rehmannii cv. Hot Cherry	24
Fig. (6)	Effect of FeSO ₄ .7H ₂ O level in MS medium on	
	number of shoots of Zantedeschia rehmannii cv.	
	Hot Cherry	28
Fig. (7)	Effect of FeSO ₄ .7H ₂ O level in MS medium on	
	shoot length (cm) of Zantedeschia rehmannii cv.	
	Hot Cherry	28
Fig. (8)	Effect of FeSO ₄ .7H ₂ O level in MS medium on	
	fresh weight of shoots (g) of Zantedeschia	
	rehmannii cv. Hot Cherry	29
Fig. (9)	Effect of FeSO ₄ .7H ₂ O level in MS medium on	
	number of leaves of Zantedeschia rehmannii cv.	
	Hot Cherry	29
Fig. (10)	Effect of MgSO ₄ .7H ₂ O level in MS medium on	
	fresh weight of propagules (g) of Zantedeschia	
	rehmannii cv. Hot Cherry	31

Fig. (11.a)	Effect of cytokinin type on number of shoots of	
	Zantedeschia rehmannii cv. Hot Cherry	34
Fig. (11.b)	Effect of cytokinin concentration on number of	
	shoots of Zantedeschia rehmannii cv. Hot	
	Cherry	35
Fig. (11.c)	Effect of interaction between cytokinin type and	
	concentration on number of shoots of	
	Zantedeschia rehmannii cv. Hot Cherry	35
Fig. (12.a)	Effect of cytokinin type on shoot length (cm) of	43
	Zantedeschia rehmannii cv. Hot Cherry	
Fig. (12.b)	Effect of cytokinin concentration on shoot length	
	(cm) of Zantedeschia rehmannii cv. Hot Cherry	44
Fig. (12.c)	Effect of interaction between cytokinin type and	
	concentration on shoot length (cm) of	
	Zantedeschia rehmannii cv. Hot Cherry	44
Fig. (13.a)	Effect of cytokinin type on fresh weight of shoots	
	(g) of Zantedeschia rehmannii cv. Hot Cherry	48
Fig. (13.b)	Effect of cytokinin concentration on fresh weight	
	of shoots (g) of Zantedeschia rehmannii cv. Hot	
	Cherry	49
Fig. (13.c)	Effect of interaction between cytokinin type and	
	concentration on total fresh weight of shoots (g) of	
	Zantedeschia rehmannii cv. Hot Cherry	49
Fig. (14.a)	Effect of cytokinin type on total number of leaves	51
	of Zantedeschia rehmannii cv. Hot Cherry	
Fig. (14.b)	Effect of cytokinin concentration on number of	
	leaves of Zantedeschia rehmannii cv. Hot Cherry	
		52
Fig. (14.c)	Effect of interaction between cytokinin type and	
	concentration on total number of leaves of	
	Zantedeschia rehmannii cv. Hot Cherry	52
Fig. (15.a)	Effect of auxin type on number of roots of	56

	Zantedeschia rehmannii cv. Hot Cherry	
Fig. (15.b)	Effect of auxin concentration on number of roots	
	of Zantedeschia rehmannii cv. Hot Cherry	57
Fig. (15.c)	Effect of interaction between auxin type and	
	concentration on number of roots of	
	Zantedeschia rehmannii cv. Hot Cherry	57
Fig. (16.a)	Effect of auxin type on root length (cm) of	
	Zantedeschia rehmannii cv. Hot Cherry	61
Fig. (16.b)	Effect of auxin concentration on root length (cm)	
	of Zantedeschia rehmannii cv. Hot Cherry	61
Fig. (16.c)	Effect of interaction between auxin type and	
	concentration on root length (cm) of	
	Zantedeschia rehmannii cv. Hot Cherry	62
Fig. (17.a)	Effect of auxin type on fresh weight of roots (g) of	
	Zantedeschia rehmannii cv. Hot Cherry	64
Fig. (17.b)	Effect of auxin concentration on fresh weight of	
	roots (g) of Zantedeschia rehmannii cv. Hot	
	Cherry	65
Fig. (17.c)	Effect of interaction between auxin type and	
	concentration on fresh weight of roots (g) of	
	Zantedeschia rehmannii cv. Hot Cherry	65
Fig. (18.a)	Effect of auxin type on root diameter (mm) of	
	Zantedeschia rehmannii cv. Hot Cherry	67
Fig. (18.b)	Effect of auxin concentration on root diameter	
	(mm) of Zantedeschia rehmannii cv. Hot Cherry	68
Fig. (18.c)	Effect of interaction between auxin type and	
	concentration on root diameter (mm) of	
	Zantedeschia rehmannii cv. Hot Cherry	68
Fig. (19.a)	Effect of auxin type on number of days to root	
	formation of Zantedeschia rehmannii cv. Hot	
	Cherry	70
Fig. (19.b)	Effect of auxin concentration on number of days to	70