

USAGE OF AGRICUTURAL WASTES IN REMOVING HEAVY METALS FROM WASTEWATER

A Thesis

Submitted to the Faculty of Engineering Ain Shames University for the Fulfillment of the Requirement of M.Sc. Degree In Civil Engineering

Prepared by

ENG. MAHMOUD MOHAMED ABDELMOMEN ELSAYED

B.Sc. in Civil Engineering, May 2011 Faculty of Engineering – Ain Shams University, Cairo, EGYPT

Supervisors

Prof. Dr. MOHAMED EL HOSSEINY EL NADI,

Professor of Sanitary & Environmental Engineering Faculty of Engineering, Ain Shams University, Cairo, EGYPT

Dr. NANY ALI HASSAN NASR,

Associate professor of Sanitary & Environmental Engineering Faculty of Engineering, Ain Shams University, Cairo, EGYPT

Dr. SAYED ISMAIL ALI AHMED,

Assistant professor of Sanitary & Environmental Engineering Faculty of Engineering, Ain Shams University, Cairo, EGYPT

USAGE OF AGRICUTURAL WASTES IN REMOVING HEAVY METALS FROM WASTEWATER

A Thesis For
The M.Sc. Degree in Civil Engineering
(SANITARY & ENVIRONMENTAL ENGINEERING)

by

ENG. MAHMOUD MOHAMED ABDELMOMEN ELSAYED

B.Sc. in Civil Engineering, May 2011 Faculty of Engineering – Ain Shams Univeristy – Cairo, EGYPT

THESIS APPROVAL

Prof. Dr. Mohamed El Sayed Aly Basuiony Professor of Sanitary Engineering & Dean of Faculty of Engineering, Banha University Prof. Dr. Mahmoud Abdel Azeem Professor of Sanitary & Environmental Engineering Faculty of Engineering, Ain Shams University Prof. Dr. Mohamed El Hosseiny El Nadi Professor of Sanitary & Environmental Engineering Faculty of Engineering, Ain Shams University

Date: - ---/2014

Dedication

This thesis is lovingly dedicated to all the close, special and beautiful people in my life.

A special dedication to

my supportive parents

my wonderful sisters and brothers

and finally special dedication to

my lovely wife

for encouraging me to complete this work and for always being there for me.

STATEMENT

This dissertation is submitted to Ain Shams University, Faculty of Engineering for the degree of M.Sc. in Civil Engineering.

The work included in this thesis was carried out by the author in the department of Public Works, Faculty of Engineering, Ain Shams University, from October 2012 to June 2014.

No part of the thesis has been submitted for a degree or a qualification at any other University or Institution.

The candidate confirms that the work submitted is his own and that appropriate credit has been given where reference has been made to the work of others

Date: - ---/-- /2014

Signature: - -----

Name: - MAHMOUD MOHAMED ABDELMOMEN ELSAYED

ACKNOWLEDGMENTS

First, thanks are all direct to Allah, for blessing this work until it has reached its end, as a part of generous help throughout my life.

It is with immense gratitude that I acknowledge the support and help of **Professor Dr. Mohamed El Hossieny El Nadi**, Professor of Sanitary & Environmental Engineering Faculty of Engineering, Ain Shams University, this thesis wouldn't have been possible unless his great efforts, meticulous revision, scientific guidance and tremendous support.

I am profoundly grateful to **Dr. Nany Ali Hassan Nasr**, Associate Professor of Sanitary Engineering, Faculty of Engineering, Ain Shams University, for her close and kind supervision, constructive criticism, true encouragement and keen interest in the progress and accomplishment of this work. I am thankful for all the time and effort she gave me.

I would like to thank **Dr. Sayed Ismail Ali Ahmed**, Assistant Professor of Sanitary Engineering, Faculty of Engineering, Ain Shams University, for his sincere help and guidance, true encouragement and keen interest in the progress and accomplishment of this work. I am thankful for all the time and effort he gave me

Last but not least, sincere thanks to the staff and personnel of Sanitary Engineering Section, Faculty of Engineering, Ain Shams University, specialy Tech. Khalid Abdel Latif for facilities, encouragement and cooperation during the preparation of this study

ABSTRACT

Name: MAHMOUD MOHAMED ABDELMOMEN ELSAYED
Title: "USAGE OF AGRICULTURAL WASTES IN
REMOVING HEAVY METALS FROM
WASTEATER"

Faculty: Faculty of Engineering, Ain Shams University.

Specialty: Civil Eng., Public Works, Sanitary & Environmental Eng. **Abstract:**-

This thesis has been carried out to study the efficiency of using agricultural wastes (untreated) in removing heavy metals from wastewater, The problem of the environmental pollution is created by the continuous and accelerated disposal of wastes. One of the main contaminants is the industrial wastewater. Most of industrial wastewater contains high concentration of toxic heavy metals. In this study, the adsorption method using raw agricultural wastes (palm waste fiber and output trimming tree (ficus)) to remove heavy metals Zn⁺² and Cr(VI) from wastewater was made.

It achieves removal ratios using palm waste fiber 93.67%, 89.20% for Zn^{+2} and Cr(VI), respectively.

Also; it success in achieving removal ratio using output trimming tree (ficus) 68.67%, 77.80% for Zn^{+2} and Cr(VI).

The thesis illustrated best removal efficiency in removing zinc and chromium using palm waste fiber, and output trimming tree (ficus)as adsorption material which is cheap material, these material can offers additional solution for the disposal of agricultural wastes and low cost in removing heavy metals from wastewater, which encourage the factories in using this method.

The results explain that, the removal efficiency increased by increasing the adsorption contact time, and the flow rate were decreased.

SUPERVISORS

Prof.Dr. Mohamed El Hosseiny El Nadi, Associate Prof. Dr. Nany Ali Hassan Nasr, Assistant Prof. Dr. Sayed Ismail Ali Ahmed.

KEY WORDS

Wastewater Treatment, Chemical Treatment, Heavy Metals Removal, Absorption, Application of Agricultural wastes.

TABLE OF CONTENTS

COVER	Page
APPROVAL COMMITTEE SHEET	ii
DEDICATION	iii
STATEMENT	iv
ACKNOWLEDGMENTS	V
ABSTRACT	vi
TABLE OF CONTENTS	vii
LIST OF FIGURES	X
LIST OF TABLES	xii
CITA DEED A ANTER ORAL CITA ON	
CHAPTER I: INTRODUCTION	
1.1. BACKGROUND & PROBLEM DEFFINITION	1
1.2. STUDY OBJECTIVES	2
1.3. SCOPE OF WORK	2 2
1.3.1. THEORETICAL PART	2
1.3.2. EXPERIMINTAL PART	2
1.4. THESIS ORGANIZATION	2
CHAPTER II : LITERATURE REVIEW	
2.1. INTRODUCTION	4
2.2. HEAVY METALS	4
2.3. WASTE WATER TREATMENT	5
2.3.1. PRELIMINARY TREATMENT	7
2.3.1.1. Screening	7
2.3.1.2. Comminutors	7
2.3.1.3. Grit Chambers	7
2.3.1.4. Skimming Tank	7
2.3.2. PRIMARY TREATMENT	8
2.3.2.1. Primary Sedimentation Tank	8
2.3.2.2. Anaerobic Pond	9
2.3.2.3. UASB Unit	9
2.3.3. SECONDARY TREATMENT	10
2.3.3.1. Attached Growth System	11
2.3.3.2. Suspended Growth System	11
2.3.3.3. Ponds	11
2.3.3.4. Anaerobic Treatment	12
2.3.4. TERTIARY AND/ OR ADVANCED TRATMENT	12
2.4. METHODS OF HEAVY METALS REMOVAL	12
2.4.1. PHYSICAL TREATMENT	12

2.4.1.1.	Filtration Technologies	13
2.4.1.2.	Sedimentation Technologies	15
2.4.2.	CHEMICAL TREATMENT	15
2.4.2.1.	Chemical Precipitation	15
2.4.2.2.	Electro dialysis	17
2.4.2.3.	Ion Exchange	18
2.4.2.4.	Chemical Oxidation	18
2.4.2.5.	Adsorption	18
2.4.3.	BIOLOGICAL TREATMENT	20
2.5.	AGRICULTURAL WASTES	20
2.6.	AGRICULTURAL WASTE APPLICATION	22
2.6.1.	REMOVAL OF HEAVY METALS BY SORPTION	22
2.6.2.	REMOVAL OF HEAVY METALS BY ADSORPTION	24
СНАРТ	ER III: MATERIALS AND METHODS	
3.1.		31
3.2.	PILOT DESCRIPTION	33
3.3.	OPERATION PROGRAM	36
3.3.1.		37
	First Run (Effective Size)	37
3.3.1.2.		37
3.3.1.3.	• • • • • • • • • • • • • • • • • • • •	37
3.3.2.	SECOND PHASE (FICUS TREES TRIMMING	31
	OUTPUT)	37
3.3.2.1.	First Run (Effective Size)	37
3.3.2.2.		38
3.3.2.3.	• •	38
3.4.	SAMPLING	38
3.5.	MEASURMENTS ANALYSIS	39
3.6.	EXPERIMENTAL WORK	40
3.7.		40
3.8.	ZINC PROCCEDER	42
3.9.	CHROMIUM PROCCEDER	42
СНАРТ	ER IV: RESULTS	
4.1.	GENERAL	43
4.2.	RESULTS OF PREPARATION STAGE	7.
7.4.	(ADSORPTION CAPACITY MEASURMENTS)	43
4.3.	PHSAE I RESULTS (PALM WASTE FIBERS)	48
4.3.1.	RESULTS OF PART I (ZINC REMOVAL)	49
4.3.1.1.	` '	49
4.3.1.1.	,	50

4.3.1.3.	Results Of Run III (Optimum Filtration Rate)	52
4.3.2.	RESULTS OF PART II (CHROMIUM REMOVAL)	54
4.3.2.1.	Results Of Run I (Media Effective Size)	54
4.3.2.2.	Results Of Run II (Media Effective Depth)	55
4.3.2.3.	Results Of Run III (Optimum Filtration Rate)	57
4.4.	PHSAE II RESULTS (FICUS TREES TRIMMING	
	OUTPUT)	59
4.4.1.	RESULTS OF PART I (ZINC REMOVAL)	59
4.4.1.1.	Results Of Run I (Media Effective Size)	60
4.4.1.2.	Results Of Run II (Media Effective Depth)	61
4.4.1.3.	Results Of Run III (Optimum Filtration Rate)	63
4.4.2.	RESULTS OF PART II (CHROMIUM REMOVAL)	65
4.4.2.1.	Results Of Run I (Media Effective Size)	65
4.4.2.2.	Results Of Run II (Media Effective Depth)	67
4.4.2.3.	Results Of Run III (Optimum Filtration Rate)	69
	ER V: DISCUSSION	
5.1.	STUDY OVERVIEW	72
5.2.	ADSORPTION CAPACITY OF APPLIED	
	MATERIALS	72
5.3.	PHASE I RESULTS DISCUSSION (PALM WASTE FIBER)	80
5.3.1.	DISCUSSION OF PHASE I PART I RESULTS	
	(ZINC REMOVAL)	80
5.3.1.1.	Discussion Of Phase I Part I Run I Results (Effective	
	Size Of Palm Waste Fiber)	81
5.3.1.2.	Discussion Of Phase I Part I Run II Results (Effective	
	Depth Of Palm Waste Fiber)	82
5.3.1.3.	Discussion Of Phase I Part I Run III Results	
	(Optimum Flow Rate For Palm Waste Fiber)	85
5.3.2.	DISCUSSION OF PHASE I PART II RESULTS	
	(CHROMIUM REMOVAL)	86
5.3.2.1.	Discussion Of Phase I Part II Run I Results (Effective	
	Size Of Palm Waste Fiber)	87
5.3.2.2.	Discussion Of Phase I Part II Run II Results	
	(Effective Depth Of Palm Waste Fiber)	88
5.3.2.3.	Discussion Of Phase I Part II Run III Results	
	(Optimum Flow Rate For Palm Waste Fiber)	91
5.4.	PHASE I RESULTS DISCUSSION (FICUS TREES	
	TRIMMING OUTPUT)	93
5.4.1.	DISCUSSION OF PHASE II PART I RESULTS	
	(ZINC REMOVAL)	93

5.4.1.1	. Discussion Of Phase II Part I Run I Results (Effective	
	Size Of Ficus Trees Trimming Output)	93
5.4.1.2	2. Discussion Of Phase II Part I Run II Results	
	(Effective Depth Of Ficus Trees Trimming Output)	95
5.4.1.3	3. Discussion Of Phase II Part I Run III Results	
	(Optimum Flow Rate For Ficus Trees Trimming	
	Output)	97
5.4.2.	DISCUSSION OF PHASE II PART II RESULTS	
	(CHROMIUM REMOVAL)	98
5.4.2.1	. Discussion Of Phase II Part II Run I Results(Effective	
	Size Of Ficus Trees Trimming Output)	99
5.4.2.2	2. Discussion Of Phase II Part II Run II Results	
	(Effective Depth Of Ficus Trees Trimming Output)	101
5.4.2.3	3. Discussion Of Phase II Part II Run III Results	
	(Optimum Flow Rate For Ficus Trees Trimming	
	Output)	102
СНАЕ	PTER VI: CONCLUSION	
6.1.	OVER VIEW	105
6.2.	CONCLUSION	105
6.3.	RECOMMENDATIONS	106
6.4.	FURTHER WORK	107
REFE	RENCESES	108

LIST OF FIGURES

Figure		Page
CHAPTER II	: LITERATURE REVIEW	
Figure (2/1):	Flow Diagram Of Wastewater Treatment	6
Figure (2/2):	Primary Sedimentation Tank	9
Figure (2/3):	Sketch For Selectivity And Productivity Of Membrane	14
Figure (2/4):	Flow Diagram Of Removal Of Heavy Metals By	
	Chemical Precipitation	16
CHAPTER III:	: MATERIALS AND METHODS	
Figure (3/1):	Palm Waste Fiber- Fine Size	31
Figure (3/2):	Palm Waste Fiber- Course Size	32
Figure (3/3):	Ficus trees trimming output- Course Size (3-5cm)	32
Figure (3/4):	Ficus trees trimming output- Fine Size (1-3cm)	33
Figure (3/5):	Sketch Of The Pilot Used In Research	34
Figure (3/6):	Pilot Used In The Research	35
Figure (3/7):	Description Of The Runs On Each Stage	36
Figure (3/8):	C109 – Spectrophotometer Instrument	40
Figure (3/9):	pH Meter	40
CHAPTER VI:	RESULTS	
Figure (4/1):	Time Versus The Adsorption Capacity Of Palm Waste	477
E' (4/0)	Fiber	47
Figure (4/2):	Time Versus The Adsorption Capacity Of Ficus Trees	40
E: (4/2)	Trimming Output	48
Figure (4/3):	Effluent Zinc Concentration Versus Time In Run I	50
Figure (4/4):	Time Versus The Effluent Zinc Concentration In Run II	52 52
Figure (4/5):	Time Versus The Effluent Zinc Concentration In Run III	53
Figure (4/6):	Time Versus The Effluent Cr (VI) Concentration In Run I	55
Figure (4/7):	Time Versus The Effluent Cr (VI) Concentration In Run II	57
Figure (4/8):	Time Versus The Effluent Cr (VI) Concentration In Run	31
11gare (1/0).	III	59
Figure (4/9):	Effluent Zinc Concentration Versus Time In Run I	61
Figure (4/10):	Time Versus The Effluent Zinc Concentration In Run II	63
Figure (4/11):	Time Versus The Effluent Zinc Concentration In Run III	65
Figure (4/12):	Time Versus The Effluent Cr(VI) Concentration In Run I	67
Figure (4/13):	Time Versus The Effluent Cr(VI) Concentration In Run II	69
Figure (4/14):	Time Versus The Effluent Cr(VI) Concentration In RunIII	71

CHAPTER V :	: DISCUSSION	
Figure (5/1):	Log (qe-qt) Versus Time (min) For Palm Waste Fiber.	73
Figure (5/2):	Log (qe-qt) Versus Time (min) For Ficus Trees Trimming	
	Output.	74
Figure (5/3):	t/qt Versus Time (min) For Palm Waste Fiber.	75
Figure (5/4):	t/qt Versus Time (min) For Ficus Trees Trimming Output.	76
Figure (5/5):	Ce/qe Versus Ce For Palm Waste Fiber	77
Figure (5/6):	Ce/qe Versus Ce For Ficus Trees Trimming Output	78
Figure (5/7):	Log (qe) Versus Log (Ce) For Palm Waste Fiber	79
Figure (5/8):	Log (qe) Versus Log (Ce) For Ficus Trees Trimming	
, ,	Output	79
Figure (5/9):	Removal Efficiency With Different Size Of Palm Waste	
	Fibers During Run I Period	82
Figure (5/10):	Removal Efficiency With Different Depth Of Fine Size of	
, ,	Palm Waste Fiber During Run II Period	84
Figure (5/11):	Removal Efficiency With Different Rate Of Flow	
	Through Fine Media Of Palm Waste Fiber During Run III	
	Period	86
Figure (5/12):	Removal Efficiency With Different Size Of Palm Waste	
, ,	Fibers During Run I Period	88
Figure (5/13):	Removal Efficiency With Different Depth Of Fine Size of	
, ,	Palm Waste Fiber During Run II Period	90
Figure (5/14):	Removal Efficiency With Different Rate Of Flow	
	Through Fine Media Of Palm Waste Fiber During Run III	
	Period	92
Figure (5/15):	Removal Efficiency With Different Size Of Ficus Trees	
	Trimming Output During Run I Period	94
Figure (5/16):	Removal Efficiency With Different Depth Of Fine Size of	
	Ficus Trees Trimming Output During Run II Period	96
Figure (5/17):	Removal Efficiency With Different Rate Of Flow	
	Through Fine Media Of Ficus Trees Trimming Output	
	During Run III Period	98
Figure (5/18):	Removal Efficiency With Different Size Of Ficus Trees	
	Trimming Output During Run I Period	100
Figure (5/19):	Removal Efficiency With Different Depth Of Fine Size of	
	Ficus Trees Trimming Output During Run II Period	102
Figure (5/20):	Removal Efficiency With Different Rate Of Flow	
	Through Fine Media Of Ficus Trees Trimming Output	
	During Run III Period	104

LIST OF TABLES

Table		Page
CHAPTER II	I: MATERIALS AND METHODS	
Table (3/1):	Samples Taken at Zinc Removal	38
Table (3/2):	Samples Taken at Chromium Removal	39
CHAPTER IV	7: RESULTS	
Table (4/1):	Adsorption Capacity Of Palm Waste Fiber	45
Table (4/2):	Adsorption Capacity Of Ficus Trees Trimming Output	46
Table (4/3):	Results Of Run I In Part I Of Phase I (Effective Size Of	
	Palm Waste Fiber)	49
Table (4/4):	Results Of Run II In Part I Of Phase I (Effective Depth Of	
	Palm Waste Fiber)	51
Table (4/5):	Results Of Run III In Part I Of Phase I (Optimum	
	Filtration Rate For Palm Waste Fiber)	53
Table (4/6):	Results Of Run I In Part II Of Phase I (Effective Size Of	
	Palm Waste Fiber)	54
Table (4/7):	Results Of Run II In Part II Of Phase I (Effective Depth	
	Of Palm Waste Fiber)	56
Table (4/8):	Results Of Run III In Part II Of Phase I (Optimum	
	Filtration Rate For Palm Waste Fiber)	58
Table (4/9):	Results Of Run I In Part I Of Phase II (Effective Size Of	
	Ficus Trees Trimming Output)	60
Table (4/10):	Results Of Run II In Part I Of Phase II (Effective Depth	
	Of Ficus Trees Trimming Output)	62
Table (4/11):	Results Of Run III In Part I Of Phase II (Optimum	
	Filtration Rate For Ficus Trees Trimming Output)	64
Table (4/12):	Results Of Run I In Part II Of Phase II (Effective Size Of	
	Ficus Trees Trimming Output)	66
Table (4/13):	Results Of Run II In Part II Of Phase II (Effective Depth	
	Of Ficus Trees Trimming Output)	68
Table (4/14):	Results Of Run III In Part II Of Phase II (Optimum	
	Filtration Rate For Ficus Trees Trimming Output)	70
CHAPTER V	: DISCUSSION	
Table (5/1):	Values of K1 & qe calc. for the Palm Waste Fiber and the	
•	Ficus Trees Trimming Output	74
Table (5/2):	Values of K2 & qe calc. for the Palm Waste Fiber and the	
•	Ficus Trees Trimming Output	76
Table (5/3):	Parameters Of Langmuir and Freundlish Isotherm.	80

Removal Efficiency Of Different Types Of Palm Waste	
Fibers	81
Removal Efficiency Of Different Depths Of Fine Size	83
Removal Efficiency Of Different Rate Of Flow	85
Removal Efficiency Of Different Types Of Palm Waste	
Fibers	87
Removal Efficiency Of Different Depths Of Fine Size	89
Removal Efficiency Of Different Rate Of Flow	91
Removal Efficiency Of Different Types Of Ficus Trees	
Trimming Output	93
Removal Efficiency Of Different Depths Of Fine Size	95
Removal Efficiency Of Different Rate Of Flow	97
Removal Efficiency Of Different Types Of Ficus Trees	
Trimming Output	99
Removal Efficiency Of Different Depths Of Fine Size	101
Removal Efficiency Of Different Rate Of Flow	103
	Fibers Removal Efficiency Of Different Depths Of Fine Size Removal Efficiency Of Different Rate Of Flow Removal Efficiency Of Different Types Of Palm Waste Fibers Removal Efficiency Of Different Depths Of Fine Size Removal Efficiency Of Different Rate Of Flow Removal Efficiency Of Different Types Of Ficus Trees Trimming Output Removal Efficiency Of Different Depths Of Fine Size Removal Efficiency Of Different Rate Of Flow Removal Efficiency Of Different Types Of Ficus Trees Trimming Output Removal Efficiency Of Different Types Of Ficus Trees Trimming Output Removal Efficiency Of Different Depths Of Fine Size

CHAPTER I INTRODUCTION

1.1 BACKGROUND

Heavy metals have been excessively released into the environment due to rapid industrialization and have created a major global concern. Cadmium, zinc, copper, nickel, lead, mercury and chromium are often detected in industrial wastewaters, which originate from metal plating, mining activities, smelting, battery manufacture, tanneries, petroleum refining, paint manufacture, pesticides, pigment manufacture, printing and photographic industries, etc...

The problem of protecting the environment from pollution and contamination by various types of discharges is now in the focus of attention all over the world. Together with the development and growth in the assortment of chemicals, there is a continuous increase in pollution of the biosphere by industrial effluents. The problem created by the continuous, accelerated pollution of the hydrosphere, especially in large cities and industrial centers is extremely acute. At present, hundreds of millions of tons of diverse substances which are a source of harm to the health of people, plant life and useful microorganisms are discharged to the environment. The volume of these discharges is continuously increasing together with industrial growth. In the last decade the volume has doubled. In large industrial cities and centers, the concentration of harmful impurities is already impermissibly high and the level is dangerous for health and plant life.

At present environmental protection from industrial discharges is achieved mainly by employing various techniques for purifying gaseous and aqueous plant effluents. Discharge to the atmosphere and water basins results both in product losses and determent to the environment.

However, almost in all cases there is a possibility for partial or complete recuperation of discharged matter. i.e., for reprocessing of purified products to return as a valuable components to the production process,

Industrial aqueous discharges represent the largest volume of toxic substances to waters. It should be remembered always that, even small permitted levels of these toxic substances are not absolutely harmless for plant and animal life.