

CATALYTIC DEGRADATION OF AZO-DYES BY USING FENTON REACTION IN AQEOUS SOLUTION

A Thesis

Submitted for Partial Fulfillment of the Requirement for the Degree of Master of Science (Physical Chemistry)

Presented by Aya Sabry Mahmoud Ibrahim

Supervisors Prof. Dr. Nadia A. Youssef

Prof. of Physical Chemistry Faculty of Women, Ain Shams University, Egypt.

Dr. Seham A. Shaban

Asst. Prof. of Physical Chemistry Egyptian Petroleum Research Institute (EPRI). Dr. Fatma A. Ibrahim

Lecturer of Physical Chemistry Faculty of Women, Ain Shams University, Egypt.

CATALYTIC DEGRADATION OF AZO-DYES BY USING FENTON REACTION IN AQEOUS SOLUTION

A Thesis Presented

To

Faculty of Women for Arts, Science and Education Ain Shams University

By

Aya Sabry Mahmoud Ibrahim

For

Submitted for the Degree of Master of Science (Physical Chemistry)

Student Name : Aya Sabry Mahmoud Ibrahim

Scientific Degree : B.Sc

Department : Chemistry

Name of Faculty : Faculty of Women

University: Ain Shams University.

B.Sc. Graduation Year: 2012

M.Sc. Graduation Year: 2016

CATALYTIC DEGRADATION OF AZO-DYES BY USING FENTON REACTION IN AQEOUS SOLUTION

Supervised by: Approved

Prof. Dr. Nadia A. Youssef Prof. of Physical Chemistry

Dr. Seham A. ShabanAsst. Prof. of Physical Chemistry

Dr. Fatma A. IbrahimLecturer of Physical Chemistry

Approved

Head of Chemistry Department

Prof. Dr.

ACKNOWLEDGEMENT

I am deeply thankful to Allah, lord of the worlds for showing me the right path and helping me to complete this work.

I would like to express my deep respect, sincere and appreciation to Prof. Dr. Nadia Abd El Hakim Youssef, Prof. of physical chemistry (Faculty of Women, Ain Shams University) for her sincere supervision, for suggesting the point of this research, for her continuous advice, guidance, respective suggestions, fruitful discussions and facilities which she offered me through the progress and finishing this work.

Deep thanks to Dr. Seham Ali Shaban Assistant. Prof. of physical chemistry (Egyptian Petroleum Research Institute) for the supervision, her valuable assistance and guidance in my entire experimental work, her kindness and encouragement during this work.

I really appreciate the efforts of Dr. Fatma Abd Elsamea Ibrahim, lecturer of physical chemistry (Faculty of Women, Ain Shams University) for her supervision, support, continuous help, and valuable advices and for helping me in revision and writing this work.

My thanks extend also to all the staff members and my colleagues at Faculty of Women Ain Shams University for their cooperation and encouragement during this work.

CONTENTS

	Page
ACKNOWLEDGEMENT	
CONTENTS	i
LIST OF TABLES	vi
LIST OF FIGURES	ix
LIST OF ABBREVATIONS	xiii
AIM OF THE WORK	xiv
ABSTRACT	XV
CHAPTER I INTRODUCTION	
I.1. Point and Non-point Sources.	1
I.2. Causes of Pollution.	2
I.3. Water Pollution.	3
I.4. Pollution Due to Synthetic Dyes and its Impact on Health and the Environment.	4
I.4.1. Toxicity effects of dyes.	5
I.4.2. Carcinogenicity of dyes.	7
1.5. History of Dyes.	8
I.6. Chemical Properties of Dyes.	9
I.7. Classification of Dyes.	10
I.7.1. Natural dyes.	10
I.7.2.Synthetic dyes	11
I.8. Several Techniques for Dye Removal and Degradation.	13
I.8.1. Physical methods.	14
I.8.2. Biological methods.	14
I.8.3. Chemical methods	15

I.8.3.1. Ozonation.	15
I.8.3.2. Immobilized by TiO ₂ .	16
I.8.3.3. Fenton and Photo-Fenton Oxidation Reaction.	
I.9. Several Studies Related to Using of Fenton Oxidation Process for the Treatment of Dyes Wastewaters.	
CHAPTER II	
EXPERIMENTAL	- 22
II.1. Chemicals and Reagent	32
II.2. Experimental.	34
II.3. Photochemical Reactor.	39
II.4. X-ray Diffraction (XRD).	39
II.5. Infrared Spectroscopy (IR).	40
II.6. Transmission Electron Microscopy (TEM).	40
II.7. Surface Area Measurement (BET).	41
II.8.Differential Thermal Analysis (DTA) and Thermal Gravimetric Analysis (TGA).	41
II.9. Vibrating Sample Magnetometer (VSM).	41
II.10. Kinetic study.	42
CHAPTER III RESULTS AND DISCUSSION	
III.1. Catalytic Degradation of Methyl Orange Dye (MO) by Using Fenton Reaction.	44
III.1.1. The absorption spectra of MO dye	44
III.1.2.The effect of the concentration of H ₂ O ₂ on the degradation of MO dye.	46
III.1.3.The effect of the concentration of FeSO ₄ on the degradation of MO dye.	50
III.1.4.The effect of the initial concentration of MO dye on its degradation.	52
III.1.5.The effect of the initial pH on the degradation of MO dye.	56

III.1.6.The effect of photo-Fenton reaction on the degradation of MO dye.	59
III.1.7. Kinetic study for the degradation of MO dye.	61
III.2. Catalytic Degradation of Methylene Blue (MB) Dye by Using Fenton Reaction.	64
III.2.1. The absorption spectra of MB dye.	64
III.2.2.The effect of the concentration of H_2O_2 on the degradation of MB dye.	66
III.2.3.The effect of the concentration of FeSO ₄ on the degradation of MB dye.	70
III.2.4. The effect of the initial concentration of MB dye on its degradation.	72
III.2.5.The effect of the initial pH on the degradation of MB dye.	76
III.2.6.The effect of photo-Fenton reaction on the degradation of MB dye.	79
III.2.7. Kinetic study for the degradation of MB dye.	80
III.3. Catalytic Degradation of Ponceau 3R (P3R) Dye by Using Fenton Reaction.	83
III.3.1. The absorption spectra of P3R dye	83
III.3.2. The effect of the concentration of H_2O_2 on the degradation of P3R dye.	85
III.3.3.The effect of the concentration of FeSO ₄ on the degradation of P3R dye.	88
III.3.4.The effect of the initial concentration of P3R dye on its degradation.	91
III.3.5.The effect of the initial pH on the degradation of P3R dye.	95
III.3.6.The effect of photo-Fenton reaction on the degradation of P3R dye.	98
III.3.7. Kinetic study for the degradation of P3R dye.	100
III.4. Catalytic Degradation of Eriochrome Black T (EBT) Dye by Using Fenton Reaction.	103
III.4.1. The absorption spectra of EBT dye.	103

III.4.2.The effect of the concentration of H_2O_2 on the	105
degradation of EBT dye.	
III.4.3.The effect of the concentration of FeSO ₄ on the	108
degradation of EBT dye.	
III.4.4.The effect of the initial concentration of EBT dye on its	111
degradation.	
III.4.5.The effect of the initial pH on the degradation of EBT	114
dye.	
III.4.6.The effect of photo-Fenton reaction on the degradation	117
of EBT dye.	
III.4.7. Kinetic study for the degradation of EBT dye.	119
, , , , , , , , , , , , , , , , , , ,	
III.5. Catalytic Degradation of Congo Red (CR) Dye by Using	122
Fenton Reaction.	122
renton Reaction.	
III.5.1. The absorption spectra of CR dye.	122
III.5.2. The effect of the concentration of H_2O_2 on the	124
degradation of CR dye.	
III.5.3.The effect of the concentration of FeSO ₄ on the	127
degradation of CR dye.	
III.5.4.The effect of the initial concentration of CR dye on its	130
degradation.	
III.5.5.The effect of the initial pH on the degradation of CR	133
dye.	
III.5.6.The effect of photo-Fenton reaction on the degradation	137
of CR dye.	
III.5.7. Kinetic study for degradation of CR dye.	139
· · ·	
III.6. Catalytic Degradation of Methylene Blue (MB) Dye	142
Using Photo-Fenton Reaction in Heterogeneous system.	
III.6.1. Characterization of prepared iron oxide.	142
TIT (1 1 C)	1.42
III.6.1.1.Characterization of prepared iron oxide using X-ray	143
diffraction (XRD).	
III.6.1.2.Characterization of prepared iron oxide using	144
infrared spectroscopy (IR).	
III.6.1.3.Characterization of prepared iron oxide using	146
transmission electron microscopy (TEM).	
III.6.1.4.Characterization of prepared iron oxide using surface	147
area measurement (BET).	

thermal gravimetric analysis and differential thermal analysis (TGA/DTA). III.6.1.6.Characterization of ferric oxide nanoparticles using	
•	
III.6.1.6.Characterization of ferric oxide nanonarticles using	
•	149
vibrating sample magnetometer (VSM) techniques.	
III.6.2.The effect of Fe ₂ O ₃ nanoparticles only and Fe ₂ O ₃	151
nanoparticles with H ₂ O ₂ on the degradation of MB	
dye in light.	
III.6.3. The effect of the concentration of H_2O_2 on the	152
degradation of MB dye.	
III.6.4.The effect of the weight of Fe ₂ O ₃ nanoparticles on the	155
degradation of MB dye.	
III.6.5.The effect of the initial concentration of MB dye on its	157
degradation.	
III.6.6.The effect of the initial pH on the degradation of MB	159
dye.	
III.6.7. Kinetic study for the degradation of MB dye by photo-	162
Fenton reaction.	
	4.4
CONCLUSIONS	164
CONCLUSIONS	
CONCLUSIONS REFERENCES	164 170