Interventricular cardiac septal thickness in fetus of diabetic mother correlated to postnatal outcome

Thesis

Submitted for partial fulfillment of master degree in Obstetrics and Gynecology

By

Heba Mohamed El Sayed

M.B., B.Ch Faculty of medicine Aim Shams University December 2005

Under supervision of

Dr. SherifFathi El Mekkawi

Assistant professor of Obstetrics and Gynecology Faculty of medicine Aim Shams University

Dr. Mohammed Saeed El Din Elsafty

Lecturer of Obstetrics and Gynecology Faculty of medicine Aim Shams University

Dr. Ghada Mahmoud Mansour

Associate consultant of Obstetrics and Gynecology Faculty of medicine Aim Shams University

Faculty of medicine Aim Shams University 2014

سماكه الحاجز القلبي لجنين إلام المصابة بمرض السكر وتأثيره على وظيفية القلب بعد الولادة

رسالة

توطئه للحصول على درجه الماجستير في أمراض النساء والتوليد

مقدمه من الطبيبة/ هبه محمد السيد بكالوريوس الطب والجراحة كليه الطب جامعه عين شمس دفعه ديسمبر 2005 تحت إشر اف

ا.د./ شريف فتحي المكاوي أستاذ مساعد أمراض النساء والتوليد كلية الطب جامعة عين شمس

د./محمد سعيد الدين الصفتي مدرس أمراض النساء والتوليد كلية الطب جامعة عين شمس

د./غادة محمود منصور

استشاري مساعد أمراض النساء والتوليد كلية الطب جامعة عين شمس

> كلية الطب جامعة عين شمس ٢٠١٤

Acknowledgment

First and foremost, praise and thanks be to the Almighty (ALLAH) for limitless help and guidance and peace be upon his prophet.

I wish to express my sincere and deep appreciations to **Dr. Sherif Fathi El Mekkawi** assistant professor of Obstetrics and GynecologyFaculty of Medicine-Ain Shams University for his continuous supervision, valuable guidance, generous encouragement, and help& overall his moral support and kindness that gave me and this work a chance to be in light.

I have the honor to sincerely thank **Dr.** Ghada Mahmoud Mansour Associate Consultant of Obstetrics and Gynecology Faculty of Medicine-Ain Shams University for her continuous close supervision, support, constant help and fair stimulating remarks throughout this study.

I am also profoundly grateful to **Dr. Mohammed Saeed El Din Elsafty**Lecturer of Obstetrics and Gynecology Faculty of Medicine-Ain Shams University, who faithfully supervised this work in a supportive and educational way and for his kindness, encouragement, great help and support...

Last but not least I would like to express my thanks and gratitude to **Dr.Sahar Samy EzzElarab** Assistant Consultant of Public health Faculty of Medicine-Ain Shams University for her specific contribution and her great help in this study.

Heba Mohamed Elasyed

Contents

	Page
List of tables	
List of figures	
List of abbreviation	
Introduction	1
Aim of the work	4
Review of literature	
Chapter 1: Cardiovascular embryology	5
Chapter 2: Fetal circulation	21
Chapter 3: Echocardiography	33
Chapter 4: Hypertrophiccardiomyopathy	44
Chapter 5: Diabetes mellitus with pregnancy	55
Patient and methods	64
Results	71
Discussion	89
Summary	96
Conclusion&Recommendation	99
Reference.	101
Arabic summary	

List of Tables

1	Fifth International Workshop Conference on	56
	Gestational Diabetes Diagnosis by Oral Glucose	
	Tolerance Testing	
2	Maternal and fetal complications in pregnancies with carbohydrate intolerance	59
3	Descriptive Statistics	72
4	Comparison between Fetuses of controlled and	73
	uncontrolled diabetic pregnancies as regards the fetal	
	weight	
5	Postnatal outcome according to APGAR SCORE	75
6	Comparison between infant of controlled and	76
	uncontrolled diabetic pregnancies as regards the	
	Apgar score.	
7	Effect of glycemic control on	78
	differentechocardiographic measurement	
8	comparison between pre and postnatal IVS in good and	80
	poor glycemic control	
9	relation between IUFD and fetal Interventricular	81
	septum thickness	
10	correlation between Interventricular septum thickness	81
	and ejection fraction.	
11	Multivariate analysis:	85

List of Figures

FIGURE	TITLE	PAGE
1	Cells from the epiblast detach and migrate	6
	through the primitive grooveto form the	
	endoderm and mesoderm layers	
2	The single heart tube shows constrictions	8
	outlining future structures	
3	Looping of the single endocardial heart tube	10
	transforms it into a complex four chamber	
	structure	
4	Development of the systemic venous	12
	drainage	
5	Formation of atrioventricular valves	13
6	The atrial septum is formed by the septum	16
	primum and septum secundum	
7	3-D depiction of atrial septum formation.	17
8	Formation of ventricular septum	19
9	The fetal circulation	23
10	The neonatal circulation	25
11	The vicious cycle of PFC	27
12	Patent ductus arteriosus	29
13	Tetralogy of Fallot	30
14	Transposition of the great arteries	32
15	Prenatal and postnatal bidimensional	67
	echocardiographic image showing	
	Interventricular septum hypertrophy	
16	Hadlock growth curves were used as	74
	reference for determination of fetal	
	Macrosomia	
17	Bar chart showing distribution of infant	77
	distress on glycemic control	
18	Relation between maternal control of DM	77
	and IUFD	

19	Receiver Operating Characteristic (ROC) curve to define the best cutoff to prenatal IVS Rt and Lt Myo thickness to predict distress	82
20	Receiver Operating Characteristic (ROC) curve to define the best cutoff to prenatal IVS to predict HCM	84
21	prenatal echocardiography of thick Interventricular septum (63mm).	86
22	prenatal echocardiography measuring left myocardial thickness (47 mm)	86
23	postnatal echocardiography showing thick Interventricular septum(68mm)	87
24	postnatal echocardiography showing thick Interventricular septum(71 mm)	87
25	postnatal echocardiography measuring Interventricular septum thickness (29 mm)	88

List of Abbreviations

ADA ASD AV	American Diabetes Association Atrial septal defect Atrioventricular
BAS	Balloon atrial septostomy
Echo	echocardiography
CHD	congenital heart disease
CVO	Combined ventricular output
DA	ductus arteriosus
FODM	Fetus of diabetic mother
FE	Fetal echocardiography
GDM	Gestational diabetes mellitus
HbF	Fetal hemoglobin
PFC	persistent fetal circulation
HCM	Hypertrophic cardiomyopathy
IDF	International Diabetes federation
IDM	Infant of diabetic mother
IFT	Impaired fasting glucose
IGT	Impaired glucose tolerance
IUFD	Intrauterine fetal death
IUGR	Intra Uterine growth retardation
IVC	Inferior vena cava
IVS	Interventricular septum
LA	Left atria
LV	Left ventricle
LVOT	left ventricular outflow tract
MRI	magnetic resonance imaging
OGTT	Oral glucose tolerance test
PA	pulmonary artery
PDA	Patent ductus arteriosus
PGE1	Prostaglandin E1

PGE2	Prostaglandin E2
PVH	Pathological ventricular hypertrophy
PVR	pulmonary vascular resistance
PFC	Persistent fetal circulation
RCT	Randomized controlled trial
ROC	Receiver Operating Characteristic
RV	Right ventricle
RA	Right atria
SVC	Superior vena cava
SVR	Systemic vascular resistance
TGA	Transposition of the great arteries
TOF	Tetra logy of Fallot
VSD	Ventricular septal defects
VS	Versus

Introduction

Pregnancy is associated with changes in insulin sensitivity which may lead to changes in plasma glucose levels. For women with known diabetes or for women who develop diabetes during the pregnancy, these changes can put outcomes at risk. (IDF Clinical Guidelines Task Force. 2005).

In the majority of cases, the frequency of the various complications that may affect mother or child can be controlled with appropriate diagnosis and management. As mentioned above, control of blood glucose levels during pregnancy is extremely important. Conventionally, the patient undergoes in-patient education with diet therapy, and if the target blood glucose levels low is not achieved, the patient should be treated with insulin therapy. (*Manderson*, et al.; 2003).

Impaired maternal glucose tolerance is associated with several complications including fetal macrosomia, growth restriction, neonatal hypoglycemia, respiratory distress syndrome and hypertrophic cardiomyopathy (*Sardesai*, *et al.*, 2001).

The fetal heart is threatened in a double fashion. First, at the beginning of gestation, the diabetes has a teratogenic effect, cardiogenesis is impaired in the correct expression of genes coding for the cardiac development. (*Molin, et al.,* 2004)

The Second, starting at the end of the second or beginning of the third trimester, the fetus may be affected by pathologic ventricular hypertrophy (PVH), commonly referred as hypertrophy cardiomyopathy. (*Allan et al., 2000*)

The alternation resulting from maternal diabetes are due to fetal hyperinsulinaemia associated with an increase in the number of insulin receptors in the heart, leading to hyperplasia and hypertrophy of myocardial cells, because of the increase in protein and fat synthesis. (*Menezes et al; 2001*)

Fetal Hypertrophic cardiomyopathy may develop at various stages of gestation. The frequency of fetal cardiomyopathy is estimated to be 2-4% among all cardiac anomalies Cardiomyopathy may result in serious adverse effects, such as cardio-circulatory insufficiency, or may lead to intrauterine fetal death (*Simpson. 2008*).

A characteristic feature of hypertrophic cardiomyopathy in infants of diabetic mothers is hypertrophy of the ventricular and septal walls. One of the studies showed that 5% of affected newborns of diabetic mothers had congestive heart failure secondary to left ventricular outflow obstruction. Cardiac hypertrophy is transient with spontaneously echocardiographic resolution within the first months after birth, irrespective of therapy (*Mormile, et al., 2011*)

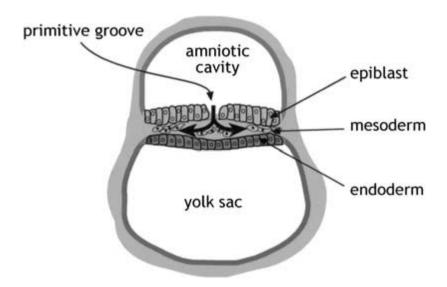
Hypertrophic septal cardiomyopathy is one of the common anomalies with diabetes, so high index of suspicion is required as the specific management may vary and digoxin, or inotropic agents which may be used in heart failure associated with structural heart defects are contraindicated if hypertrophic cardiomyopathy is present (*Narchi and Kulaylat*, 2000).

Measuring the Interventricular septum area is of particular importance in fetuses at risk for hypertrophic cardiomyopathy, such as the children of diabetic mothers, where there is significant thickening of the Interventricular septum, causing obstructions in the left ventricular outflow tract. (*Abu-Sulaiman, Subaih; 2004*).

Aim of the work

To study Interventricular septal thickness in fetus of diabetic mother and correlate it with good glycemic control.

To correlate postnatal cardiac function to Interventricular septal thickness to reach cut off value of septal thickness for prenatal prediction of symptomatic hypertrophic cardiomyopathy in infant of diabetic mother.


CARDIOVASCULAR EMBRYOLOGY

The last two decades have seen a wealth of new information concerning heart development. Previously, our knowledge of cardiac development was essentially based on the analysis of series of embryo sections and three dimensional reconstructions so as to clarify the anatomy of certain regions that were difficult to interpret on simple sections. The use of these techniques does not allow either to follow the outcome of a group of cells or to accurately distinguish the development mechanisms of a given cardiac chamber, the atrioventricular junction or even the efferent pathway (*Meilhac et al.*, 2004).

As a result of hemodynamic environment changes, there are alterations in multiple mechanical signals (hydrostatic pressure, strain, fluid shear, etc.) in the heart. Such changes in mechanical stimuli have been shown to drive changes in cell function in adult cardiac cells (*Butcher et al.*, 2006).

Embryonic Folding Early in the third week of development, the germ disk has the appearance of a flat oval disk and is composed of two layers: the epiblast and the hypoblast. The first faces the amniotic cavity and the latter faces the yolk sac. A primitive groove, ending caudally with the primitive pit surrounded by a node, first appears at approximately 16 days of development and extends half the length of the embryo. The primitive groove serves as a conduit for epiblast cells that de-

tach from the edge of the groove and migrate inwards toward the hypoblast and replace it to form the endoderm. After the endoderm is formed, cells from the epiblast continue to migrate inwards to infiltrate the space between the epiblast and the endoderm to form the intraembryonic mesoderm. After this process is complete, the epiblast is termed the ectoderm (*Hogers et al.*, 2009). (*Fig. 1*).

Fig. 1. Cells from the epiblast detach and migrate through the primitive groove to form the endoderm and mesoderm layers (*Hogers et al.*, 2009).

The flat germ disk transforms into a tubular structure during the fourth week of development (*Butcher et al.*, 2006).