Genetic Polymorphism of Uridine-Diphosphoglucuronosyltransferase 1A7 Gene in Chronic Viral Hepatitis and Hepatocellular Carcinoma in Egyptian Patients

Thesis

Submitted for partial fulfillment of M.D Degree in Clinical and Chemical Pathology

$\mathbf{B}\mathbf{y}$

Walaa Ahmed Mohammad Rabie

M.Sc. Clinical and Chemical Pathology

Supervised by

Prof. Dr. Omnia Ahmed Youssef

Professor of Clinical and Chemical Pathology
Faculty of Medicine
Cairo University

Prof. Dr. Nabil Mostafa El Kady

Professor of Tropical Medicine Faculty of Medicine Cairo University

Prof. Dr. Ahmed El Sayed El Tawel

Professor of Clinical and Chemical Pathology
Faculty of Medicine
Cairo University

Dr. Enas Hamdy Mahmoud

Lecturer of Clinical and Chemical Pathology Faculty of Medicine Cairo University

Faculty of Medicine
Cairo University
2010

ACKNOWLEDGMENTS

First of all, I would like to thank "God" for his grace and mercy, and for giving me the effort to complete this work.

I would like to express my deepest gratitude and respect to my **Prof. Dr. Omnia Ahmed Youssef,** Professor of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, who spent much of her valuable time, and enriched the study with her experience and knowledge, and who provided me with her valuable instructions, sincere help, strong support, and who played a huge role throughout the whole work,

Sincere thanks to **Prof. Dr.Nabil Mostafa El Kady** Professor of Tropical Medicine, Faculty of Medicine, Cairo University, for his great help and assistance throughout the period of this work.

I am deeply indebted to **Prof. Dr. Ahmed El Sayed El Tawel** Professor of Clinical and Chemical Pathology, Faculty of Medicine. Cairo University; under his supervision I had the honor to proceed with this work.

I would like to express my profound thanks to **Dr.Enas Hamdy Mahmud**, Lecturer of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, for supervising this work, her outstanding help step by step in all its stages, for her patience to follow closely its parts and for her constant encouragement and support.

My deepest appreciation goes to **Dr.Dina EL Gayar**, assistant professor of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, for her kind patience and help with the statistical analysis of the present work.

I would like to deeply thank **Dr.Abeer Mohy**, Lecturer of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, for her great effort helping me in my practical work and her instructive technical advices.

To all the patients, for whose benefit the present study was conducted, I wish it would help you a step forward.

I will always be grateful to all the staff members, colleagues and friends in the chemical pathology department for their help and support.

Abstract

Background: Hepatocellular carcinoma (HCC) is the most common cause of primary liver neoplasm. The incidence of HCC worldwide varies according to the prevalence of hepatitis B and C infections. UDP-glucuronosyltransferases 1A7 (UGT1A7) gene polymorphisms including the W208R SNP (codon 208: $TGG \rightarrow CGG$) have been shown to encode enzymes with lower carcinogen detoxification activity and are associated with certain cancers. **Objectives:** The present study aims to elucidate the role of UGT1A7 SNP (622 $T\rightarrow C$) in the pathogenesis of HCC, and if this polymorphism is associated with elevated bilirubin level.

Subjects and Methods: Genomic DNA from the blood of 22 patients with HCC, 25 patients with chronic viral hepatitis B and/ or C, and 16 apparently healthy controls was analyzed for UGT1A7 polymorphism using PCR − RFLP. Results: A statistically significant increase was found in the frequency of risky genotypes (TC, CC) in HCC group as compared to the protective genotype (TT) (P □ 0.01). UGT1A7 T allele and C allele were designated as H (high activity) & L (low activity) alleles respectively. A statistically significant increase was found in frequency of L allele in HCC group (54%) as compared to control group (25%) p = 0.03, on the other hand the H allele showed statistically significant decrease in HCC group (46%) compared to control group (75%) p = 0.03. Increase in total bilirubin level in cases harboring UGT 1A7 Polymorphism compared to wild genotype (p< 0.01) was observed, thus demonstrating its role in the pathogenesis of hyperbilirubineamia. Conclusions: The UGT1A7 polymorphism was associated with elevated bilirubin level and may play a role in the pathogenesis of HCC.

Key words: UGT1A7, HCC, viral hepatitis, bilirubin.

Contents

	Page
List of Tables.	i
List of Figures	iii
List of Abbreviations	V
Introduction and Aim of work	1
Review of literature:	3-78
Chapter (1): Hepatitis B and C Viruses	3
Chapter (2): Hepatocellular Carcinoma (HCC)	22
Chapter (3): Uridine 5'-diphosphate (UDP)- glucuronosyltransferases (UGTs)	46
Chapter (4): Uridine 5'-diphosphate	68
glucuronosyltransferase 1A7 gene	79
Results	99
Discussion	125
Summary and Conclusions	134
Recommendations	138
References	139
Appendix	188
Arabic Summary	1

List of Tables

Table	Title	Page
1	Child-Pugh Classification	
2	TNM Staging System in HCC Primary Tumor	39
3	Comparing Phase I & Phase II	
4	Sequence of primers used for amplification of UGT1A7-622 gene	89
5	The created new DNA fragment size in base pair (bp)	95
6	Restriction Enzyme (Rsa I) used in the present study	96
7	Number and percent (%) of HCV cases among different groups of the study	
8	Number and percent (%) of HBV cases among different groups of the study	101
9	Number and percent (%) of cases complaining of fatigue and abdominal distension as presenting symptoms	102
10	Number and percent (%) of cases complaining of lower limb oedema and haematemesis as presenting symptoms	103
11	Number and percent (%) of cases complaining of jaundice as a presenting symptom	105
12	Different patterns of liver size, Liver cirrhosis and spleen as shown by abdominal ultrasound examination	106
13	Site, number and echogenicity of hepatic focal lesion (HFL) in HCC cases	106
14	Mean ± standard deviation (SD) of alkaline phosphatase, albumin, and prothrombin concentration (PC) in different groups of the study	
15	Median and interquartile range of Total bilirubin, direct bilirubin, AST, and ALT in different groups	110
16	Mean ± standard deviation (SD) of creatinine in different groups of the study	111
17	Median and interquartile range of AFP between study groups	112
18	Correlation of AFP and Alkaline phosphatase, prothrombin concentration and Creatinine among the studied groups	113
19	Genotype frequency and % of UGT1A7-622 gene in study groups	116
20	Frequency and % of risky and protective genotypes in study groups	117
21	Frequency and % of low activity allele (C) and high activity allele (T) among different groups of the study.	118

List of Tables (Cont.)

Table	Title	Page
22	Risk estimate (odds ratio) and 95% Confidence Intervals for the	119
	studied groups	
23	% of HCC cases with elevated total bilirubin level among wild	120
	type and polymorphic genotypes	
24	% of HCC cases with elevated total bilirubin level among	121
	polymorphic genotypes	
25	% of viral hepatitis cases with elevated total bilirubin level among	122
	wild type and polymorphic genotypes	
26	% of diseased cases with hyperbilirubineamia among wild and	123
	polymorphic genotypes	
27	% of diseased cases with hyperbilirubineamia among patients	124
	with polymorphic genotypes	

List of Figures

Figure	Title	
1	Structure of HBV	
2	Genetic and physical map of the HBV genome	
3	Possible out come of HBV infection	
4	Hepatitis C Structure	9
5	Genome organization of Hepatitis C virus	10
6	Possible outcome of hepatitis C virus infection	11
7	Mechanisms involved in HBV- and HCV-related chronic	14
	liver disease and HCC	
8	The role of adaptive immune responses to HBV infection	15
9	Cell cycle and control of G1-G0 check point	23
10	Molecular model for hepatocarcinogenesis	24
11	A) Diagram showing key components of the Wnt signaling	30
	pathway following Wnt-mediated activation of the pathway.	
	B) Inactivation of the signaling pathway	
12	Phases I and II of the metabolism of a lipophilic xenobiotic	
13	The glucuronidation reaction	50
14	Schematic representation of human UGT topology	51
15	Phylogenetic tree for the different UGT isoenzymes	56
16	chromosome: 2; Location: q37	
17	Seven <i>UGT1A3</i> alleles caused by SNPs	59
18	Common genetic polymorphisms at the <i>UGT1</i> gene	
19	Common genetic polymorphisms in UGT2B gene	62
20	Determination of UGT activity	64
21	Measurement of UGT activity using FPIA	
22	UGT1A7 polymorphisms	69
23	Graphic representation of the three polymorphic sites	71
	identified on the human UGT1A7 exon 1 sequence	
24	Results of PCR-based RFLP analysis of UGT1A7-622T/C	98
	polymorphism	
25	Numbers of HCV cases among different groups.	100
26	Numbers of HBV cases among different groups of the study	101
27	Number of cases complaining of fatigue and abdominal	
	distension as presenting symptoms	
	a) Number of cases complaining of fatigue as presenting	102
	symptoms.	

List of Figures (Cont.)

Figure	Title		
27	b) Number of cases complaining of abdominal distension as	103	
	presenting symptom.		
28	a) Number of cases complaining of lower limb oedema as		
	presenting symptom.	104	
	b) Number of cases complaining of haematemesis as presenting		
	symptom.		
29	Number of cases complaining of jaundice as presenting symptom.	105	
30	a) Site of hepatic focal lesion (HFL) in HCC group.	107	
	b) Number of hepatic focal lesion (HFL) in HCC group.	107	
	c) Ehogenicity of hepatic focal lesion (HFL) in HCC group.	107	
31	a) Mean of alkaline phosphatase in different groups of the study		
	b) Mean of albumin in different groups of the study	109	
	c) Mean of prothrombin concentration (PC) in different groups		
32	a) Medians of Total bilirubin, direct bilirubin	111	
	b) Medians of AST, and ALT in different groups		
33	Mean of creatinine in different groups of the study	112	
34	Medians of AFP between study groups	113	
35	Correlation of AFP and Alkaline phosphatase	114	
36	Correlation of AFP and prothrombin concentration	114	
37	Correlation of AFP and Creatinine	115	
38	% of variant genotypes of UGT1A7-622 gene in study groups.	117	
39	% of risky and protective genotypes in study groups.	118	
40	% of risky allele (C) and protective allele (T) among different	119	
	groups of the study.		
41	% of HCC cases with elevated total bilirubin level among wild type	120	
	and polymorphic genotypes		
42	% of HCC cases with elevated total bilirubin level among	121	
	polymorphic genotypes.		
43	% of viral hepatitis cases with elevated total bilirubin level among	122	
	wild type and polymorphic genotypes		
44	% of diseased cases with hyperbilirubineamia among wild and	123	
	polymorphic genotypes		
45	% of cases with hyberbilirubineamia among patients with risky	124	
	genotypes of diseased group		

List of Abbreviations

AFB ₁	Aflatoxin B ₁
APC	Adenomatous Polyposis Coli
CDK	Cyclin dependent kinases
CGH	Comparative genomic hybridization
CKI	CDK inhibitors
CNS-II	Crigler–Najjar syndrome type II
CNVs	Copy number variants
DE	Dimensional electrophoresis
DMEs	Drug-metabolizing enzymes
ESI	Electrospray ionization
FAP	Familiar adenomatous polyposis
FISH	Fluorescence in situ hybridization
G1	Gap1
GP3	Glypican3
GS	Gilbert's syndrome
HAs	Heterocyclic amines
HBV	Hepatitis B virus
HCA	Heterocyclic amines
HCC	Hepatocellular carcinoma
HCV	Hepatitis C virus
IDU	injection drug users
IGF-II	Insulin-like growth factor II
IFN	Interferon
IRES	Internal Ribosomal Entry Site
IRS-1	Insulin receptor substrate 1
LC/MS/MS	Liquid chromatography/tandem mass spectrometry
LD	Linkage disequilibrium
Lef	Lymphocyte enhancer-binding factor
LHB	Large envelope protein
MALDI TOF-MS	Matrix assisted laser desorption/ionization time-of-
MALDI TOT-MS	flight mass spectrometry
MHC	Major histocompatibility complex
MRP	Multidrug resistance protein
MS	Mass spectrometry
NK	Natural killer
Nt	Nucleotide

NTR	Nontranslated regions
PAH	Polycyclic aromatic hydrocarbons
PIVKA-II	Protein induced by vitamin K-absence or Antagonist-II
Rb	Retinoblastoma
SCCA-1	Squamous Cell Carcinoma Antigen -1
SELDI TOF-MS	Surface-enhanced laser desorption/ionization time-of-
	flight mass spectrometry
SNPs	Single-nucleotide polymorphisms
TCF	Transcription factor
TGF-β	Transforming growth factor–beta
TIMP	Tissue inhibitor of metalloproteinases
TRAP	Telomeric repeat amplification protocol
UDPGA	Uridine diphosphoglucuronic acid
UGTs	Uridine 5'-diphosphate (UDP)-glucuronosyltransferases
UPLC-MS	Ultra-performance liquid chromatography-tandem mass
	spectrometry

INTRODUCTION AND AIM OF WORK

Hepatocellular carcinoma (HCC) is the most common cause of primary liver neoplasms and the fourth most frequent type of cancer worldwide following lung, breast and bowel cancers with an increasing incidence, causing one million deaths per year (*Oscar et al.*,2007). The incidence of HCC worldwide varies according to the prevalence of hepatitis B and C infections which are by far the major risk factors. Areas such as Asia and sub-Saharan Africa with high rates of infectious hepatitis have incidences as high as 120 cases per 100,000 (*American Cancer Society.*, 2007).

The burden of HCC has been increased in Egypt with a doubling in the incidence rate in the past 10 years. In Egypt hospital-based studies have reported an overall increase in the relative frequency of all liver related cancers (>95% as HCC), from approximately 4% in 1993 to 7.3% in 2003 (*el-Zayadi et al., 2005*). This has been attributed to the same previously mentioned biological factors in addition to the endemic infections in the community such as schistosomiasis. Recent investigations in Egypt have shown the increasing importance of HCV infection in the etiology of liver cancer, this has been estimated to account for 40–50% of cases, and the declining influence of HBV and HBV/HCV infection (25% and 15%, respectively) (*Elizabeth et al., 2008; Anwar et al., 2008; and Iver et al., 2009*).

The increased incidence of HCC in hemochromatosis and α -1-antitrypsin deficiency as well as the detection of chromosomal aberrations indicates a role of genetic events in HCC development. Therefore, in view of the multifactorial cause of HCC, the identification of modifiers of carcinogenetic initiation is required to define and assess the risk of HCC development (*Vogel et al.*, *2001*).

Modifier genes encoding proteins that participate in cellular detoxification and defense are attractive candidates that can modify the impact of environmental factors capable of inducing neoplastic transformation (*Wang et al.*, 2004).

The human UDP-glucuronosyltransferases (UGTs) represent an enzyme super family that is capable of catalyzing the glucuronidation and detoxification of diverse compounds, including therapeutic drugs, endogenous metabolites (*e.g.*, bilirubin and steroid hormones), and known human carcinogens, such as heterocyclic and polycyclic hydrocarbons and heterocyclic amines (*Strasburg and Manns.*, 2000; Wang et al., 2004; and Urawa et al., 2006).

UGT1A7 gene polymorphisms including the W208R SNP (codon 208: TGG→CGG) have been shown to encode enzymes with lower carcinogen detoxification activity and are associated with certain cancers e.g. orolaryngeal, HCC, colorectal cancer and pancreatic cancers (*Zheng et al., 2001; and Borentain et al., 2007*).

A well-known defect of glucuronidation in humans is illustrated by the group of individuals with Gilbert's syndrome and is associated with genetic polymorphism in the UGT1A gene (*Mercke et al.*, 2006).

Aim of the Work

The present study aims to elucidate the role of UGT1A7 SNP (622 $T\rightarrow C$) in the pathogenesis of HCC, and if this polymorphism is associated with elevated bilirubin level.

CHAPTER 1 Hepatitis B and C Viruses

Viral hepatitis is liver inflammation due to a viral infection. It is a major public health problem in many countries all over the world and especially in Middle East, Asia, East-Europe, and Africa (Little and Rubin., 1987; Liang et al., 2008; and Liaw and Chu., 2009).

Hepatitis B virus (HBV)

Hepatitis B virus is the most serious cause of viral hepatitis and a potentially life-threatening liver disease, affecting about 2 billion people worldwide with about 350 million complicated with chronic infection (WHO Fact Sheet No. 204., 2008).

HBV structure

Human hepatitis B virus is a member of the hepadnavirus family; it is a DNA enveloped virus, which is remarkably stable to organic solvents, and also heat- and pH-resistant (*Gripon et al.*, 2002).

The virus was first discovered as "Australia antigen", later renamed HBsAg (for hepatitis B surface antigen) (Ahn et al., 2003). HBeAg (hepatitis B e antigen) was identified several years later as a marker for patients at high risk for transmission of the disease (Shuping et al., 2005), also hepatitis B patients sera contain circulating antibodies against HBcAg (hepatitis B core antigen), and develop antibodies against HBeAg and HBsAg (anti-HBe and anti-HBs) at later stages of infection (Beck and Nassal., 2007)

HBV Genome

HBV is a circular, double-stranded DNA virus of approximately 3200 nucleotides, it contains four overlapping open reading frames that encode the surface (viral envelope (PreS1, PreS2, S)), core (nucleocapsid(core, precore)), X (a nonstructural protein that operates as a multifunctional regulator modulating gene transcription, cell responses to genotoxic stress, protein degradation, apoptosis, and several signaling pathways), and polymerase proteins (Gunther et al., 1999; Bartholomeusz et al., 2001; and Jammeh et al., 2008).

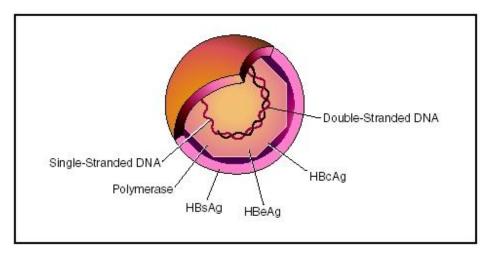


Figure (1): Structure of HBV (Giner Galvan et al., 2007).

After the virus enters a hepatocyte, the viral genome is delivered to the nucleus, and the relaxed circular DNA is converted to covalently- closed- circular DNA (cccDNA), the (cccDNA) serves as a template for the transcription of viral RNA. The Hepatitis B virus replication cycle includes reverse transcription of RNA intermediates to prime DNA synthesis and translation of the hepatitis B proteins, including HBsAg and HBeAg. Thus, cccDNA plays a key part in the maintenance of chronic hepatitis B infection (*Liaw and Chu.*, *2009*).

The entire nucleotide sequences of HBV genomes have been classified into 8 genotypes (A-H) based on an inter group divergence of more than 8% in the complete nucleotide sequence. Apart from genotypes E and C, the genotypes have subtypes with sequence difference in at least 4% (*Liaw and Chu.*, 2009).

The most common core promoter mutations involve a two-nucleotide substitution: A-T at nucleotide (nt) 1762 and G-A at nt 1764 (*Kurosaki et al.*, 1996; and Kao et al., 2003), it was shown that the likelihood of presence of T1762/A1764 mutations in the core promoter parallels the progression of liver disease, and that this mutation is found most frequently in HBV genotype D followed by genotypes C than B patients and are seen least frequently in genotype A (*Chang et al.*, 2004).

These core promoter mutations enhanced replication capacity and reduced virion secretion, which may increase viral load in the liver, thus triggering liver damage either directly or indirectly through the immune response (*Baumert et al.*, 1996; *Sugauchi et al.*, 2003; and *Shuping et al.*, 2005), if such massive liver damage occurs during acute infection, fulminant hepatitis may develop, however, if it occurs during chronic infection, it increases hepatocyte turnover, induces fibrosis, and enhances the chance of hepatocellular transformation and malignancy(Jammeh et al., 2008).

Mutations have further been detected in the pre-S regions of the HBV genome. PreS deletions were shown to be more frequent in patients with HBV genotype C .A pre-S defective HBV variant has been associated with fulminant hepatitis B; which results from a defect or impairment in virion secretion it has been also isolated from patients with fibrosing cholestatic hepatitis (*Glebe et al.*, 2005; and Engelke et al., 2006). Furthermore, a recent study demonstrates evidence that patients with progressive liver disease have a higher frequency of pre-S deletion. (*Choi et al.*, 2009).