

### Ain-Shams University Faculty of Science Chemistry Department

# SYNTHESIS AND REACTIONS OF SOME PYRAZOLOPYRIMIDINE DERIVATIVES WITH EXPECTED BIOLOGICAL ACTIVITY

### A THESIS SUBMITTED BY

#### DALIA AHMED ABD-ELMOTALIB OSMAN

Researcher Assistant, Photochemistry Department Chemical and Industrial Research Division National Research Center, Cairo, Egypt. M. Sc. Organic Chemistry (2008)

## To The Chemistry Department, Faculty of Science Ain-Shams University

For The Ph.D. Degree in Organic Chemistry

### Supervised by

### Prof. Dr. Ahmed Ismail Hashem

Professor of Organic Chemistry Faculty of Science Ain-Shams University

### Prof. Dr. Farouk M. E. Abdel-Megeid

Professor of Organic Chemistry Photochemistry Department National Research Center

### Prof. Dr. Samir Tawfik A. Gaballah

Associate Professor of Organic Chemistry Photochemistry Department National Research Center



### Ain-Shams University Faculty of Science Chemistry Department

# SYNTHESIS AND REACTIONS OF SOME PYRAZOLOPYRIMIDINE DERIVATIVES WITH EXPECTED BIOLOGICAL ACTIVITY

### A Thesis Submitted by DALIA AHMED ABD-ELMOTALIB OSMAN

M. Sc. Organic Chemistry (2008) **For Ph. D. Degree in Organic Chemistry** 

### Supervised by

#### Prof. Dr. Ahmed Ismail Hashem

Professor of Organic Chemistry Faculty of Science Ain-Shams University

### Prof. Dr. Farouk M. E. Abdel-Megeid

Professor of Organic Chemistry Photochemistry Department National Research Center

#### Prof. Dr. Samir Tawfik A. Gaballah

Associate Professor of Organic Chemistry Photochemistry Department National Research Center

Head of the Chemistry Department
Prof. Dr. Hamed Ahmed Younes Derbala

## بسم الله الرحمن الرحيم

رَبِّ أَوْزِعْنِي أَنْ أَشْكُرَ نِعْمَتَكَ الَّتِي أَنْعَمْتَ وَعَلَى وَالِدَيَّ وَأَنْ أَعْمَلَ صَالِحًا تَرْضَاهُ عَلَيَّ وَعَلَى وَالِدَيَّ وَأَنْ أَعْمَلَ صَالِحًا تَرْضَاهُ وَأَدْخِلْنِي بِرَحْمَتِكَ فِي عِبَادِكَ الصَّالِحِين وَأَدْخِلْنِي بِرَحْمَتِكَ فِي عِبَادِكَ الصَّالِحِين صَدق الله العظيم

#### ACKNOWLEDGEMENT

First and foremost I'm deeply thankful to almighty "ALLAH" for showing me the right path, and helping me to complete this work.

I wish to express my cordial thanks and gratitude to **Prof. Dr. Ahmed Ismail Hashem**, Professor of Organic Chemistry, Faculty of Science, Ain Shams University, for his continuous advice and valuable help during the progress of this thesis.

My sincere thanks and gratitude are also due to **Prof. Dr. Farouk M. E. Abdel-Megeid**, Professor of Organic Chemistry, Photochemistry Department, National Research Center (NRC) for suggesting the subject investigated, for his valuable advices, and for ensuring that the thesis is in the well-presented form.

My deep thanks and appreciation to **Prof. Dr. Aymn E. Rashad**, Professor of Organic Chemistry, Photochemistry Department, National Research Center (NRC) for his support, useful advices and his constructive encouragement.

Great thanks to **Prof. Dr. Samir T. Gaballah**, Assistant Professor of Organic Chemistry Photochemistry Department, National Research Center (NRC).

Additionally, I extend my thanks to all members of the Photochemistry Department.

I wish to express my cordial thanks and gratitude to **National Research Center**, Giza, Egypt for providing the facilities during this work.

Dalia Ahmed A. Osman

### **DEDICATION**

I would like to dedicate this thesis to my late *father*Ahmed Abd-Elmotalib Osman and I wish he was beside me now.

Also, this thesis is dedicated to my *mother* 

Dr. Asma Mohamed Mahran who has been a great source of motivation and inspiration; she supported me all the way since the beginning of my studies.

Also, I dedicate my dissertation work to my family, a special feeling of gratitude to my loving *husband*,

Ahmed Elsayed Ahmed and my lovely children
Habiba Ahmed Elsayed & Omar Ahmed Elsayed.

Finally, this thesis is dedicated to all those who believe in the richness of learning.

I will always appreciate all they have done.

### **Contents**

### **Contents**

| List of The Prepared Compounds                     |    |
|----------------------------------------------------|----|
| List of abbreviations                              |    |
| Abstract                                           |    |
| Summary of the original work                       | I  |
| Literature Survey on Chemistry Of Pyrazolo[3,4-d]- |    |
| pyrimidines                                        | 1  |
| 1. Introduction                                    | 1  |
| 2. Synthesis of pyrazolo[3,4-d]pyrimidine ring     |    |
| system                                             | 5  |
| 2.1. Intramolecular cyclization of the appropriate |    |
| pyrazole derivatives                               | 6  |
| 2.1.1. From amino-cyano derivatives                | 6  |
| <b>2.1.1.1.</b> Reaction with acids                | 6  |
| <b>2.1.1.2.</b> Reaction with orthoformates        | 9  |
| <b>2.1.1.3.</b> Reaction with formamides           | 12 |
| <b>2.1.1.4.</b> Benzoylation                       | 14 |
| <b>2.1.1.5.</b> Reaction with isocyanates          | 14 |
| <b>2.1.1.6.</b> Reaction with chloro-compounds     | 16 |
| <b>2.1.1.7.</b> Reaction with urea/thiourea        | 17 |
| <b>2.1.1.8.</b> Reaction with carbon disulphide    | 18 |
| <b>2.1.1.9.</b> Reaction with DMF DMA              | 19 |
| <b>2.1.1.10.</b> Reaction with Hydrazides          | 20 |
| 2.1.2. From amino carboxamide derivatives          | 20 |
| <b>2.1.2.1.</b> Reaction with acetyl chloride      | 21 |
| <b>2.1.2.2.</b> Reaction with thiourea             | 23 |
| <b>2.1.2.3.</b> Reaction with carbon disulphide    | 23 |
| <b>2.1.2.4.</b> Reaction with aromatic aldehydes   | 24 |

| <b>2.1.2.5.</b> Reaction with anhydrides                | 25 |
|---------------------------------------------------------|----|
| <b>2.1.2.6.</b> Miscellaneous                           | 26 |
| 2.1.3. From amino ester derivatives                     | 27 |
| <b>2.1.3.1.</b> Reaction with thiophosgene              | 27 |
| <b>2.1.3.2.</b> Reaction with isothiocyanates           | 27 |
| <b>2.1.3.3.</b> Reaction with formamide                 | 28 |
| <b>2.1.3.4.</b> Reaction with urea or thiourea          | 29 |
| <b>2.1.3.5.</b> Reaction with acetic anhydride          | 30 |
| <b>2.1.3.6.</b> Reaction with DMF DMA                   | 30 |
| <b>2.1.3.7.</b> Hydrolysis                              | 32 |
| 2.1.4. Miscellaneous                                    | 32 |
| 2.2. Intramolecular cyclization of the appropriate      |    |
| pyrimidine derivatives                                  | 33 |
| 3. Reactions of pyrazolo[3,4-d]pyrimidines              | 38 |
| <b>3.1.</b> Substitution reactions                      | 38 |
| <b>3.2.</b> Halogenation                                | 47 |
| <b>3.3.</b> Hydrazinolysis                              | 49 |
| <b>3.4.</b> Formation of pyrazolotriazolopyrimidine and |    |
| pyrazolotriazinopyrimidine ring systems                 | 50 |
| <b>3.4.1.</b> Reactions of hydrazine derivatives        | 50 |
| 3.4.2. Reactions of the amino- and diamino              |    |
| derivatives                                             | 55 |
| <b>3.5.</b> Reactions of the thione-thiol derivatives   | 60 |
| <b>3.6.</b> Side chain reaction                         | 62 |
| <b>3.7.</b> Dimerization                                | 64 |
| <b>3.8.</b> Formation of pyrazolopyrimidine nucleosides | 65 |
| <b>3.8.1.</b> Formation of pyrazolopyrimidine cyclic    |    |

| nucleosides                                              | 65  |
|----------------------------------------------------------|-----|
| <b>3.8.2.</b> Formation of pyrazolopyrimidine acyclic    |     |
| nucleosides                                              | 71  |
| 4. Pharmacological activity                              | 78  |
| Results and Discussion                                   | 81  |
| Biological Activity                                      | 103 |
| 1. Antiproliferative Activity                            | 103 |
| 1.1. Introduction                                        | 103 |
| 1.2. Materials and methods                               | 105 |
| <b>1.2.1.</b> Chemicals                                  | 105 |
| <b>1.2.2.</b> Cell lines and culturing                   | 105 |
| <b>1.2.3.</b> <i>In vitro</i> Antiproliferative Assay    | 106 |
| 1.2.4. Biochemical Assays                                | 107 |
| <b>1.2.5.</b> Antioxidant Enzyme Assays                  | 108 |
| <b>1.2.6.</b> Oxidative Stress Assays                    | 108 |
| <b>1.2.7.</b> Estimation of Nucleic Acids and Protein    | 108 |
| 1.3. Statistical analysis                                | 109 |
| 1.4. Results.                                            | 109 |
| <b>1.4.1.</b> <i>In vitro</i> Antiproliferative Activity | 109 |
| 1.5. Biochemical Assays                                  | 113 |
| 1.6. Conclusion.                                         | 116 |
| 2. Antioxidant Activity                                  | 120 |
| <b>2.1.</b> Introduction                                 | 120 |
| <b>2.2.</b> Materials and Methods                        | 121 |
| <b>2.3.</b> Radical scavenging activity (RSA %)          | 121 |
| <b>2.3.1.</b> DPPH Assay                                 | 121 |
| <b>2.3.2.</b> ABTS assay                                 | 122 |