List of Contents

Ti	tle Page
•	List of Abbreviations
•	List of TablesV
•	List of FiguresVII
•	Introduction1
•	Aim of the Work4
•	Review of Literature
	o Chapter (1):Food Allergy5
	o Chapter (2):GERD53
	o Chapter (3):Food Allergy and GERD105
•	Subjects and Methods115
•	Results
•	Discussion
•	Summary
•	Conclusion155
•	Recommendations
•	References
•	Arabic Summary

List of Abbreviations

5HT4 5-Hydroxytryptamine 4 Receptors

BMI..... Body Mass Index

CD4...... Cluster of Differentiation 4

CLA Cutaneous Lymphocyte Antigen

CM Cow Milk

CMA..... Cow Milk Allergy

CMPA Cow Milk Protein Allergy

CRD...... Component-Resolved Diagnostics

EG Eosinophilic Gastroenteritis

EGJ..... Esophago-gastric Junction

EoE Eosinophilic Esophagitis

FA Food Allergy

FD Functional Dyspepsia

FDA..... Food and Drug Administration

FEIA Fluorescent Enzyme Immunoassay

FGIDs Functional Gastrointestinal Disorders

FPIEC Food-Protein Induced Enterocolitis

FPIES..... Food Protein Induced Enterocolitis Syndrome

GEJ..... Gastro Esophageal Junction

GER...... Gastro-Esophageal Reflux

GERD Gastro-Esophageal Reflux Disease

GIT Gastro-Intestinal Tract

H2RA Histamine-2 Receptor Antagonists

HDL..... High Density Lipoprotein

HPF High Power Field

HRQL Health Related Quality of Life Questionnaire

List of Abbreviations(Cont.)

IgA Immunoglobulin A

IgE..... Immunoglobulin E

IL-4..... Interleukin 4

LA Los Angeles Classification System

LES Lower Esophageal Sphincter

MCH Major Histocompatibility Complex

MEN Multiple Endocrine Neoplasia

NERD non erosive reflux disease

NSAIDs Non-Steroidal Anti-Inflammatory Drugs

OAS..... Oral Allergy Syndrome

OFC...... Oral Food Challenge Test

OIT..... Oral Immunotherapy

PNU Protein Nitrogen Unit

PPIs..... proton pump inhibitors

QOL Quality Of Life

RAST...... Radioallergosorbent test

RFE...... Radiofrequency Energy

SCIT Subcutaneous Immunotherapy

SCJ Squamocolumnar Junction

SEB Staphylococcal Enterotoxin B

SLIT......Sublingual Immunotherapy

SPT...... Skin Prick Test

TGF Transforming Growth Factor

Th2 T-helper 2 cells

TLESR...... Transient lower esophageal sphincter

relaxation

List of Abbreviations(Cont.)

TVP Tumor Necrosis Factor

TVP Textured Vegetable Protein

VCAM-1 Vascular Cell Adhesion molecule 1

ZES Zollinger-Ellison Syndrome

List of Tables

Table No.	Title Page			
Review of Literature				
Table (1):	Extra-esophageal manifestations of GERD 62			
Table (2):	Clinical manifestations of EoE64			
Table (3):	Endoscopic features of EoE64			
Table (4):	Savary-Miller classification of reflux esophagitis, Grades 1, 2, 3, 4 and 5			
Table (5):	The Los Angeles classification of GERD84			
Subjects and Methods				
Table (6):	The Los Angeles Classification of Oesophagitis 119			
Table (7):	Signs and symptoms observed in OFC121			
Table (8):	Extraction procedures			
	Results			
Table (9):	Socio-demographic distribution of the studied cases			
Table (10):	Grading of GERD and prevalence of food allergy by SPT			
Table (11):	Number of food allergens in relation to age of onset of GERD, severity of GERD and history of food allergy			
Table (12):	Diet elimination test outcome 140			
Table (13):	Relations of grading of GERD and socio- demographic distribution of the studied cases			
Table (14):	Relation between grading of GERD and prevalence of food allergy			

List of Tables (Cont.)

Table No.	Title Page
Table (15):	Relation between grading of GERD socio- demographic distribution of patients with food allergy
Table (16):	Response to diet elimination test 147

List of Figures

Fig. No.	Title Page
	Review of Literature
Fig. (1):	Peaches
Fig. (2):	Parsnip 12
Fig. (3):	Crab
Fig. (4):	Lobster
Fig. (5):	Prawns
Fig. (6):	Walnuts 13
Fig. (7):	Pistachios
Fig. (8):	Mustard-seeds 14
Fig. (9):	Pine nut
Fig. (10):	Bouillabaisse
Fig. (11):	Cuttle fish ink sauce
Fig. (12):	Cuttle fish
Fig. (13):	Surimi
Fig. (14):	Gastric mucus 57
Fig. (15):	Gastro-esophageal reflux 62
Fig. (16):	Images of endoscopic features of EoE 65
Fig. (17):	Barium esophagogram demonstrating gastroesophageal reflux with the patient in the upright position
Fig. (18):	Gastroesophageal reflux at the level of the thoracic inlet is demonstrated on this barium esophagogram

List of Figures (Cont.)

Fig. No.	Title Page
Fig. (19):	Savary-Miller classification of reflux esophagitis, Grades 1, 2, 3, 4 and 5
Fig. (20):	PH monitoring capsule 86
Fig. (21):	Anatomy of a parietal cell91
Fig. (22):	A) The stretta system. The four electrodes provide 60 to 300 J of radiofrequency energy to each needle, heating the surrounding muscle tissue. (B) The lower esophageal sphincter is tightened after radiofrequency ablation
Fig. (23):	(A) Enterynx is injected into the muscualr and submucosal layers at a point about 1 to 2 m caudal to the Z-line. (B) The distensibility and shape of esophago-gastric junction is changed
Fig. (24):	(A) Gastric mucosa of gastro-esophageal junction is retracted and wrapped. Sutures are delivered across the tissue and full thickness plicaiton is completed. (B) EnterynX creates a tight valve
	Subjects and Methods
Fig. (25):	Upper GI endoscope of Ain-Shams university hospitals
Fig. (26):	Skin Prick test
Fig. (27):	Skin patch test
	Results
Fig. (28):	Gender of the studied cases 133

List of Figures (Cont.)

Fig. No.	Title Page
Fig. (29):	Mean age of the studied cases 133
Fig. (30):	Grading of GERD
Fig. (31):	SPT of the studied cases 135
Fig. (32):	Patch test of the studied cases 136
Fig. (33):	Prevalence of food allergy among cases 136
Fig. (34):	Relation between family history and skin test results
Fig. (35):	Types of food allergens
Fig. (36):	Outcome of diet elimination test 140
Fig. (37):	Insignificant association between Gender and grade of GERD
Fig. (38):	Mean age differences between grades of GERD 142
Fig. (39):	Mean age of onset of GERD differences between grades of GERD 142
Fig. (40):	Prevalence of food allergy among different grades of GERD
Fig. (41):	History of food allergy among different grades of GERD
Fig. (42):	Male gender among different grades of GERD 145
Fig. (43):	Mean age difference among different grades of GERD
Fig. (44):	Mean age of onset of GERD difference among different grades of GERD 146
Fig. (45):	Response to diet elimination among different grades of GERD

Introduction

Gastro-esophageal reflux disease (GERD) is a condition that develops when the reflux of stomach contents causes troublesome symptoms and/or complications (*Vakil et al.*, 2006). GERD prevalence is high, occuring in 14% to 20% of the urban population in the United States (*Dent et al.*, 2005), a figure equivalent to that in other countries (*Moraes-Filho et al.*, 2005).

In addition to its morbidity, the importance of GERD has been emphasized as there is a significant limitation to the health-related quality of life, such as permanent discomfort to the patient with repeated visits to the doctor, as well as high costs of investigations and treatment(*De Sousa et al.*,2006).

While heartburn. regurgitation, and difficulty swallowing the most **GERD-related** are common GERD can manifest a variety of other complaints. symptoms. This recognition has led to a broader definition of GERD-related symptomatology, which can include laryngitis, cough, asthma, and dental erosions(Vakil et al., 2006).

Regurgitation or aspiration of gastric juice in GERD can cause extra GIT manifestations as chronic cough, dental erosion, recurrent pneumonitis, or idiopathic pulmonary fibrosis. In one cohort of patients with idiopathic pulmonary fibrosis, 67 percent were later diagnosed with GERD(*Sweet et al.*,2007).

Atypical manifestations of GERD may present in the form of chronic sinusitis, posterior laryngitis, nocturnal choking, chronic hoarseness, otitis media, idiopathic pulmonary fibrosis, and asthma(*Richter*,1996).

Epidemiological evidence suggests that 34-89 percent of asthmatics have GERD (irrespective of the use of bronchodilators)(Sontag et al., 1990). Physiologic changes caused by asthma and chronic cough promote acid reflux. GERD is also considered by many investigators as a contributing airway inflammation. to association of GERD with asthma/chronic cough and vice versa has been supported by a large number experimental and clinical findings. This clarifies that there is a link between GERD and allergy(Theodoropoulos et al.,2002).

Few studies discussed the relationship between GERD and food allergy but still the link between them not been well studied or investigated. One study showed the role of serum interleukin 4 (IL-4) and tumor necrosis factor alpha (TNF-α) in pathogenesis of the reflux symptoms in children with primary acid gastro-esophageal reflux (GER) and acid GER secondary to cow's milk allergy (CMA) and concluded that The highest mean serum IL-4 and TNF-α concentrations were observed in children with GER secondary to CMA and in children in control group (with milk allergy and/or other food cow's allergy (FA) diagnosed-CMA/FA) before the treatment administration(Semeniuk et al., 2012). Another study took patients with CMA and suspected GERD and found that

exposure CM increases the number of weakly acidic reflux episodes. challenge CM during 48-hour impedance-pH multichannel intra-luminal monitoring sub-group of patients identified a with allergeninduced reflux (Borrelli et al., 2012).

The estimated prevalence of food allergy is 2-8% in the pediatric population and approximately 2% in adults. Food accounts for 90% of allergic reactions. Cows' milk protein, egg, peanut, soya and wheat are the most common causative foods in infants and young children; peanuts, tree nuts, fish and shellfish are the most common causative foods in older children and adults. The development of food allergy requires an immunological reaction directed to a food antigen. This reaction may involve immunoglobulin E (IgE) or T lymphocytes (T-cells) or some components of IgE both and T-cells (mixed IgE/non-IgE reaction)(Motala,2008).

In at least a subset of infants with these functional disorders, improvement after dietary elimination of specific food proteins has been demonstrated. Gastrointestinal food allergy should therefore be considered in the differential diagnosis of infants presenting with persistent behaviour, regurgitation, constipation or irritable particularly if conventional treatment has not The diagnosis of beneficial. food protein-induced gastrointestinal motility disorders is hampered by the absence of specific clinical features or useful laboratory markers(Heine, 2008).

Aim of the Work

The aim of this work is to study the prevelance of food allergy in adult patients with GERD of unknown etiology.

CHAPTER (1):FOOD ALLERGY

Definition:

Food allergy is an immune system reaction that occurs soon after eating a certain food. Even a tiny amount of the allergy-causing food can trigger symptoms and signs such as digestive problems, hives or swollen airways. In some people, a food allergy can cause severe symptoms or even a life-threatening reaction as anaphylaxis. It's easy to confuse a food allergy with a much more common reaction known as food intolerance. While bothersome, food intolerance is a less serious condition that does not involve the immune system(*Gupta et al.*,2013).

People with a food intolerance may have digestive symptoms such as diarrhea, bloating and stomach cramps. This may be caused by difficulties digesting certain substances, such as lactose. However, no allergic reaction takes place (NHS, 2014).

Important differences between a food allergy and a food intolerance include:

- The symptoms of a food intolerance usually only occur several hours after eating the food but food allergy can occur within few minutes.
- Eating a larger amount of food to trigger an intolerance but food allergy can occur with minimal amount of food.
 - Unlike an allergy, a food intolerance is never lifethreatening(NHS,2014).

Historical view of food allergy:

Over two thousand years ago Hippocrates wrote about the negative effects that food could have on different people:

For cheese does not prove equally injurious to all men, for there are some who can take it to satiety, without being hurt by it in the least, but, on the contrary, it is wonderful what strength it imparts to those it agrees with; but there are some who do not bear it well, their constitutions are different, they differ in this respect, that what in their body is incompatible with cheese, is roused and put in commotion by such a thing; and those in whose bodies such a humor happens to prevail in greater quantity and intensity, are likely to suffer the more from it. But if the thing had been pernicious to the whole nature of man, it would have hurt all" (*Lundy, 2007*).

Historically, physicians were recognized for being able to treat their patients' illnesses by diet manipulation. That means that throughout history, doctors treated illness by changing a patient's diet. An example of this written approximately 200 years ago and credited to Matthew Baillie is as such:

"To judge of the true skill and merit of a physician requires a competent knowledge of the science of medicine itself; but to gain the good opinion of the patient or his friends, there is perhaps no method so ready as to show expertness in the regulation of the diet of the sick. Discretion and judgment will, of course, be required; the