

شبكة المعلومات الجامعية

بسم الله الرحمن الرحم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار

في درجة حرارة من ١٥-٥٠ مئوية ورطوية نسبية من ٢٠-٠٠%. To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

بعض الوثائق الاصلبة تالفة

بالرسالة صفحات لم ترد بالاصل

CORRELATION OF BIOLOGICAL MARKERS IN COLORECTAL CANCER TO CLINICAL OUTCOME OF THE DISEASE

Subm MD

Thesis
Submitted for partial fulfillment of
MD degree of medical oncology

BY

GEHAN RIZK LABIB BOTRUS (M.B.; B. CH., M.Sc.)

SUPERVISED BY

PROF: MOSTAFA M. EL SERAFI

PROF. ABDEL RAHMAN NABAWY MOHMADI

HEAD OF MEDICAL ONCOLOGY DEPT.
PROF. OF MEDICAL ONCOLOGY NATIONAL CANCER INSTITUTE

CAIRO UNIVERSITY

PROF. OF CANCER BIOLOGY
DEPT.
NATIONAL CANCER INSTITUTE
CAIRO UNIVERSITY

&

DR. OSMAN M. MANSOUR

ASSISTANT PROF. OF MEDICAL ONCOLOGY NATIONAL CANCER INSTITUTE CAIRO UNIVERSITY

2004

Abstract

This prospective study included patients with pathologically proved metastatic colorectal cancer, who presented to the Medical Oncology Department of the National Cancer Institute in Cairo in the period between January 2002, and January 2004. The median age was 47 years and treated with the de Gramont regimen that utilizes both "prolonged infusion" and biomodulation; It comprises a 2-hour intravenous infusion of FA (200 mg/m2) followed by intravenous bolus 5-FU (400 mg/m2) and a 22-hour intravenous infusion of 5-FU (at a dose of 600 mg/m2). This is repeated on day 2, and the whole cycle is repeated every 14 days. The objectives were to determine the expression levels of three metabolic enzymes of fluoropyrimidines: thymidylate synthase (TS), thymidine phosphorylase (TP) and dihydropyrimidine dehydrogenase (DPD) and detect the presence of the microsatellite instability (D2S177) and correlate all these molecular markers with other prognostic factors, response and survival. There is significant correlation between low DPD expression and response to 5-FU (P= 0.003), in contrast to TS level, there is strong correlation between high TS expression and response (P=0.007). In case of the correlation of DPD expression and the toxicity; there was (67.9%) grade III-IV toxicity in the deficient group in contrast to (37.5%) in the low expression group (P=0.06). No significant correlation could be detected in TP and MSI (D2S177) with the other prognostic markers.

Key words: Colorectal cancer, Thymidine synthase, Thymidine phosphorylase, Dihydropyrimidine Dehydrogenase, Microsatellite instability, Prognosis

ACKNOWLEDGMENT

I would like to express my deepest gratitude, sincere appreciation and respect to **Professor Dr. Mostafa El Serafy**, head of Medical Oncology Department, National Cancer Institute, Cairo University for his constant guidance and great encouragement. It is a great honor to have worked under his guidance and supervision.

I am more than in debt to **Professor Dr. Abd El Rahman Zekri**, Professor of Virology and Molecular Biology, National Cancer Institute, Cairo University for his constant guide, valuable aid, novice ideas and unlimited generosity.

I feel deeply grateful to my **Professor Dr. Osman Mansour**, assistant Professor of Medical Oncology, National Cancer Institute, Cairo University, for his generous assistance and great help for preparing this thesis.

It is a special pleasure to acknowledge the help and co-operation; I have had from Dr. **Sabrin Abdalla** in molecular biology department, National Cancer Institute, Cairo University.

Last but not least, I would like to thank all my staff members and colleagues in the Medical Oncology Department of NCI, Cairo University, for their continuous co-operation, understanding, and kind sympathy during the accomplishment of this study.

Gehan Rizk

List of contents

	Page
List of tables	
List of figures	
List of abbreviations	
Introduction and aim of the work	1
Review of literature	3
• Epidemiology	3
Pathogenesis of colorectal cancer	
Genetic factors	5
Environmental factors	19
Host factors	22
Major genetic syndromes	25
Pathologic features	33
Prognostic factors of colorectal cancer	
Pathologic factors	38
Tumor biologic feature	45
Clinical feature	57
Screening & Diagnosis of Colorectal Cancer	59
• Prevention	65
Effective chemotherapy of colorectal cancer	
5-Fluoropyrimidines	71
Irinotecan	77
Oxaliplatin	78
Oral fluoropyrimidines	79
Raltitrexed	80
Management of the potentially curable Colorectal cancer	
Surgical management	81
Adjuvant chemotherapy	81
Adjuvant radiotherapy	90
Management of advanced disease	
Benefit of palliative chemotherapy	93
Efficacy of various systemic regimens	94
Management of colorectal liver metastasis	
Respectable colorectal liver metastasis	109
Unrespectable colorectal liver metastasis	112
Patients and methods	115
Results	134
Discussion	163
Summary & Conclusions	171
Recommendations	174

LIST OF TABLES

Table	1	Genes involved in colorectal carcinogenesis	7
Table	1 2	Common somatic mutations in oncogenes and tumors suppressor genes in CRC	15
Table. Table	3	Estimated relative and absolute risk of developing colorectal cancer	23
Table	<i>3</i>	World Health organization classification of CRC	33
Table	5	AJCC/UICC TNM definitions and stage groupings	37
Table		Correlations between TNM stage and survival in CRC	39
		Prognostic significance of serosal involvement	39
Table Table		Macroscopic pathologic assessment of total mesorectal excision	43
Table		Prediction of local recurrence and survival in rectal cancer by mesorectal score	43
Table		Diagnostic Criteria for infiltrating tumor border configuration	44
Table		Characteristics of studies on the prognostic role of angiogenic features	47
		Characteristics of studies on the prognostic role of Plasminogen related molecules	48
Table Table		Characteristics of studies on the prognostic role of P53	49
Table		Characteristics of studies on the prognostic role of DCC	51
		Characteristics of studies on the prognostic role of MSI	52
Table Table		Characteristics of studies on the prognostic role of TS	53
		Phase III trials with irinotecan in 5-FU resistant CRC	97
Table Table		Raltitrexed combined with irinotecan	100
Table		Phase III trial of chronotherapy assessing oxaliplatin with 5FU	103
Table		Phase III trial assessing oxaliplatin as initial treatment for metastatic CRC	103
Table		Oxaliplatin combined with irinotecan	104
Table		UFT/LV versus 5FU/LV	107
Table		Capecitabine versus bolus 5-FU/LV	108
Table		Modification of doses of 5-FU according to the toxicity	117
Table		Evaluation of target lesions	118
Table		Evaluation of non target lesions	118
Table			118
Table		Common toxicity criteria	119-
Table	20	Common toward distance	123
Table	29	TP, TS, DPD and D2S177 primers sequence, amplification size and t	he 131
		optimum annealing temperature for each primer.	
Table	30	Patient's characteristics	135
Table		Tumor presentation	136
Table		Pre-study treatment measures	137
Table		Toxicity profile of the studied cases	138
Table		Response rates	139
Table		TS expressions	140
Table		Correlation between TS expressions and the age	141
Table		Correlation between TS expressions and the gender	141
Table		Correlation between TS expressions and the performance status	141
Table		Correlation between TS expressions and the pathologic type	142
Table		Correlation between TS expressions and the pathologic grade	142
Table		Correlation between TS expressions and the site of metastasis	142
Table			143
Table		<u>-</u>	145
Table			146

Table	45	Correlation between TP expressions and the gender	14
Table	46	Correlation between TP expressions and the performance status	14
Table	47	Correlation between TP expressions and the pathologic type	14
Table	48	Correlation between TP expressions and the pathologic grade	14
Table	49	Correlation between TP expressions and the site of metastasis	14
Table	50	Correlation between TP expressions and the overall response	14
Table	51	DPD expressions	15
Table	52	Correlation between DPD expressions and the age	15
Table	53	Correlation between DPD expressions and the gender	15
Table		Correlation between DPD expressions and the performance status	15
Table		Correlation between DPD expressions and the pathologic type	15
Table		Correlation between DPD expressions and the pathologic grade	15
Table		Correlation between DPD expressions and the site of metastasis	15
Table		Correlation between DPD expressions and the overall response	15
Table		Correlation between DPD expressions and the grading of toxicity	15
Table		Correlation between DPD expressions and the hematological toxicity	15
Table		Correlation between DPD expressions and the non-hematological toxicity	15
Table	62	Correlation of the combined any low expression and the other group with the response.	15
Table	63	Correlation between MSI (D2S177) and the age	159
Table		Correlation between MSI (D2S177) and the gender	159
Table		Correlation between MSI (D2S177) and the performance status	159
		Correlation between MSI (D2S177) and the pathologic type	160
-		Correlation between MSI (D2S177) and the pathologic grade	160
Table	68	Correlation between MSI (D2S177) and the primary tumor	160
Table	69	Correlation between MSI (D2S177) and the site of metastasis	16
Table	70	Correlation between MSI (D2S177) and the overall response	161

LIST OF FIGURES

			_
Fig.	1	Multistep colorectal carcinogenesis	6
Fig.	2	Schematic representation of APC protein	10
Fig.	3	A model indicating the function of APC	11
Fig.	4	Mismatch repair pathway in human cells	14
Fig.	5	Illustrations of mesorectal excision	43
Fig.	6	5-FU – metabolism	72
Fig.	7	The thymidylate Synthase enzyme pathway	72
Fig.	8	β-actin and DPD expressions	129
Fig.	9	TS and TP expressions	129
Fig	10	Microsatellite analysis of paired normal (N) and tumor (T), LOH	132
Fig	11	Microsatellite analysis of paired normal (N) and tumor (T), MSI	133
Fig	12	Overall survival	140
Fig	13	Correlation between TS expressions and the site of metastasis	143
Fig	14	Correlation between TS expressions and the response	144
Fig	15	Correlation between TS expressions and the overall survival	145
Fig	16	Correlation between TP expressions and the site of metastasis	147
Fig	17	Correlation between TP expressions and the response	149
Fig	18	Correlation between TP expressions and the overall survival	149
Fig	19	Correlation between DPD expressions and the site of metastasis	152
Fig	20	Correlation between DPD expressions and the response	154
Fig	21	Correlation between DPD expressions and the overall survival	154
Fig	22	Correlation Between DPD Expressions And The Toxicity	155
Fig	23	Correlation between DPD expressions and the type of toxicity	156
Fig	24	Response to chemotherapy according to the combined modality of (TS,	157
,		TP and DPD)	
Fig	25	Overall survival in combined modality of (TS, TP and DPD)	158
Fig	26	Local, liver and lymph node recurrences as correlated to MSI	161
Fig	27	Response to chemotherapy according to MSI (D2S177)	162
Fig	28	Overall survival according to MSI (D2S177)	162

List of Abbreviations

5'DFCR 5' deoxy -5 Fluorocytidine

5-FU 5 – fluorouracil

5-FUdR 5'- fluoro 2' —deoxyuridine 5-FUH₂ Dihydrofluorouracil 5-FUR 5- fluorouridine

5-FUTP 5-fluorouridine triphosphate

AFAP Attenuated familial adenomatous polyposis
AIO Arbeitsgemeinschaft Internische Onkologie
AICC American Joint Committee on cancer

AJCC American Joint Committee of ANC Absolute neutrophilic count APC Adenomatous polyposis coli Active specific immunity

ASI Active specific immunity
ASO Allele specific olignoucleotide analysis

ATP Adenosine triphosphate

B - cat Beta catenin

BAX
BCG
BCL2
B- cell leukemia/lymphoma 2

BMPR1A Bone morphogenic protein receptor 1-A

BSA Bovine serum albumin

CD Cluster of differentiation

CDC 2- kinase Cyclin dependent

CDDP Cis dichloradiammineplatinum c-DNA core- Deoxyribonucleic acid CEA Carcinoembryonic antigen

CHEK2 Gheck point

CI Continuous infusion
CI Confidence interval
CIN Chromosomal instability
C-MYC Myelocytomatosis oncogen

COX Cyclo-oxygenase

CPS Cancer Prevention Study

CPT 11 Irinotecan

CR Complete response CRC Colorectal cancer

CRM Circumferential resection margin

CRM Circumferential margin

Cryosurgery CSA Cellular Sarcoma C-SRC Computed tomography CT Common toxicity criteria CTC Cytidine triphosphate CTP Diaminocyctohexane DACH Deleted colorectal cancer DCC Disease Limited toxicity **DLTs** Deoxyribonucleic acid DNA

DPD Dihydropyrimidine dehydrogenase DSH Disheveled (DSH) signaling protein

dTDP Thymidine diphosphate

dTMP Thymidylate

dTTP Thymidine triphosphate

dUMP Deoxyuridylate E - cad E- cadherin

ECOG Eastern Co-operative Oncology Group
EGFR Epidermal growth factor receptor
ELISA Enzyme linked immunosorbent assay

EU Eniluracil

EUS Endorectal /Ultrasound

F Female
FA Folinic acid

FAP Familial adenomatous polyposis

FDA Food drug administration
FDG -PET Fluorodeoxyglucose positron emission scan

FdUMP

5- Fluoro – 2 deoxyuridine monophosphate
FOIFIRI

FOLFOX

Ovaliplatin + 5-FU+ Leucovorin

FOLFOX Oxaliplatin + 5-FU+ Leucovorin FUDP Fluorouridine diphosphate FUMP fluorouridine monophosphate FUTP Fluorouridine triphosphate

GA Guanine adenine

G-CSF Granulocyte colony stimulating factor

GI Gastrointestinal

GITSG Gastrointestinal study group
GSH Transferease GIutathione S transferase
GSK3 Glycogen synthase kinase – 3
HAI Hepatic Arterial Infusion

HBCC Hereditary breast and colon cancer hDig Homologue of dorsophilla disc protein

Her-2 neu C erb B2 (cellular erythroblastic leukemia oncogene)

hMLH1 Human mult homolog I hMSH₂ Human must homolog 2

HNPCC Hereditary non polyposis coli cancer hPMS1 and hPMS2 Human postrmeiotic segregation 1 and 2

HR Hazard Ratio
I.V Intravenous

ICG International Collborative Group
IFL Irinotecan + 5-FU+ Leucovorin

Ig Immunoglobulin IHC Immunohistochemistry

IMC - C225 Cetuximab

IMPACT International multicenter Pooled analysis of colon cancer trials

INT Intergroup

IROX Irinotecan + Oxaliplatin

KD Kilo Dalton

K-RAS Kirsten Rat Sarcoma oncogene

LD Longest Diameter
LN Lower normal

LOH Loss of heterozygocity
LR Local Recurrence
LV Leucovorin

M Male Month

MCC Mutated colorectal cancer MMP-7 Matrix metalloprotease – 7

MMR Mismatch repair

MOF Mustine, Oncovine, Fluorouracil MRI Magnetic resonance imaging

mRNA Messenger - RNA
MSI Microsatelite instability
MSS Microsatellite stable

MT Microtubules
MTX Methotrexate
MVC Microvessel count
MVD Microvessel Density

NACCP Netherlands adjuvant colorectal cancer project

NCCTG North Central Cancer Treatment Group

NCI National Cancer Institute
NIH National Institute of Health

N-Ras Neuroblastoma Rat Sarcoma oncogene

NSABP National Surgical Adjuvant Breast and Bowel Project

NSAIDS Non steroidal anti inflammatory drugs

OR Odds ratio
OS Overall survival
Oxal Oxalilatin

PALA Phosonactyl L- ascorpic acid

PARP Plasminogen activation related parameters

PBS Phosphate Buffer Saline

PCNA Proliferating cell nuclear antigen
PCR Polymerase chain reaction

PD Progressive disease

PETACC Pan European trial in adjuvant colon cancer

PJS Peutz jeghers syndrome
PR Partial response
PS Performance status
QoL Quality of life

RASCAL Rapid Scanning and Correlation of Multiple Sequence Alignments

RFA Radiofrequency ablation

RNA Ribonucleic acid
RR Response rate
RR Relative risk
RT Reverse trascriptase

RT-PCR Reverse transcriptase- polymerase chain reaction

SD Stable disease