Hair and Serum Zinc (Zn) Level in a Group of Egyptian Wheezy Infants and its Relation to Disease Severity

Thesis

For Partial Fulfillment of Master Degree of Pediatric

Submitted by

Sally Ibrahim Moustafa M.B., B.Ch. (2007)

Supervised by

Professor /Tharwat Ezzat Deraz

Professor of Pediatrics Faculty of Medicine, Ain-Shams University

Assistant Professor / Asmaa Alhusseiny Ahmed

Assistant Professor of Pediatrics, Faculty of Medicine, Ain-Shams University

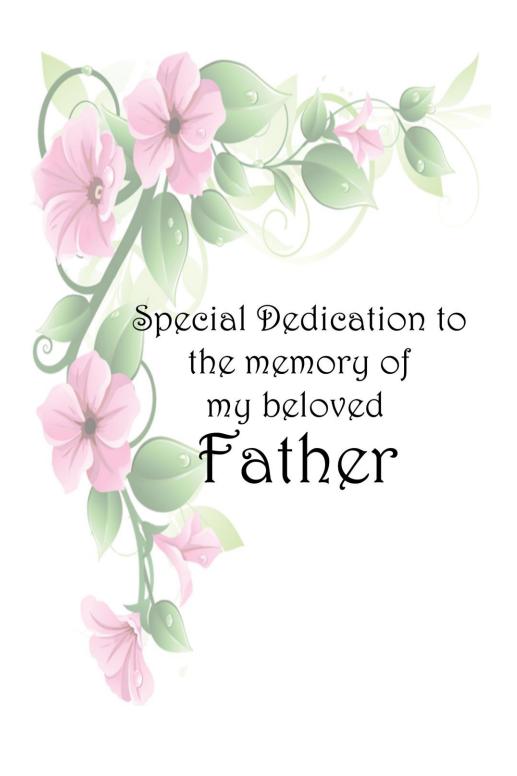
> Faculty of Medicine Ain Shams University 2016

بني أِنْهُ الْأَجْزَالِحِيْمُ

[وڤُل رَّبِّ زِدْنِي عِلْماً]

سورة طه الآيه رقم 114

Acknowledgement


First of all, all gratitude is due to **God** almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

Really I can hardly find the words to express my gratitude to **Professor /Tharwat Ezzat Deraz** Professor of Pediatrics, faculty of medicine, Ain Shams University, for his supervision, continuous help, encouragement throughout this work and tremendous effort he has done in the meticulous revision of the whole work. It is a great honor to work under his guidance and supervision.

Really I can hardly find the words to express my gratitude to Assistant Professor/Asmaa Alhusseiny Ahmed, Assistant Professor of Pediatrics, Faculty of Medicine, Ain Shams University for her continuous directions and meticulous revision throughout the whole work. I really appreciate her patience and support.

Last but not least, I dedicate this work to my family, whom without their sincere emotional support, pushing me forward this work would not have ever been completed.

Contents

List of Abbreviations	i
List of Tables	IV
List of Fig.s	VI
List of Boxes	
Introduction and Aim of the Work	1
Review of Literature	
Chapter (I) Wheezy Infant	5
Bronchiolitis	33
Obstructive Sleep Apnea Syndrome	57
Bronchial Asthma	69
Chapter (II) Vitamins & Trace Elements	88
Patients and Methods	124
Results	130
Discussion	146
Summary and Conclusion	157
Recommendations	161
References	162
Arabic Summary	

List of Abbreviations

AAP : American academy of pediatrics.

AHI : Apnea Hypoapnea Index.
 AIA : Aspirin induced asthma.
 APCs : Antigen presenting cells.
 API : Asthma predictive index.

ARDS : Acute respiratory distress syndrome. AVED : Ataxia with vitamin E deficiency.

Bcl2 : Inner mitochondrial protein.BPD : Broncho-pulmonary dysplasia.

C.pneumoniae: Chlamydia pneumoniae.C.trachomatis: Chlamydia trachomatis.CBC : Complete blood picture.

CCL5 : Chemokine (C-C motif) ligand 5.

CCR5 : Chemokine receptor 5.

CD14 : Cluster of differentiation 14. CMT1 : Copper membrane transporter1.

COPD : Chronic obstructive pulmonary disease. CPAP : Continuous positive airway pressure.

CVA : Cough variant asthma.ECG : Electrocardiogram.

ECM : Extracellular membrane. EIA : Exercise induced asthma.

EISL : Estudio Internacional de Sibilancias en Lac

- tants (International Study of wheezing in

infants.

EPR : Expert panel report.

ERS : Europear respiratory society.

EVW : Episodic viral wheeze.

FVE1 : Forced expiratory volume in the first second.

GERD : Gastro-oesophageal reflux disease.

H.influenza: Hemophilus influenza.

HIV : Human immunodeficiency virus.

List of Abbreviations (Cont.)

HRV : Human rhino virus.ICS : Inhaled corticosteroids.

ICU : Intensive care unit.

IFN- γ : Interferone γ .

IgE : Immuno-globulin E.

IL: Interleukin.

ISAAC: International Study of Asthma and Allergy in

Childhood.

JACI : The Journal of Allergy and Clinical

Immunology.

LABA : Long acting B2 agonist. LDLs : Low denisty lipoproteins.

LPS : Lipopolysaccharides.

LRTI : Lower respiratory tract infection. LTRA : Leukotriene receptor antagonist.

M.cattarrhalis: Moraxella cattarrhalis.

mAPI : Modified asthma predictive index.MT : Membrane type metalloproteinase.

NF Kappa B: Nuclear factor kappa-light-chain-enhancer of

activated B cells.

NK : Natural killer

1,25(OH)2D: 1, 25-di-hydroxyvitamin D.

25OHD : 25-hydroxyvitamin D.OSA : Obstructive sleep apnea.

OSAS : Obstructive sleep apnea syndrome.

PBW : Post bronchiolitis wheeze.
PCR : Polymerase chain reaction.
PICU : Pediatrics intensive care unit.

RA : Retinoic acid.

RBP : Retinol binding protein.
RCT : Randomized control trial.

RDAs : Recommended dietry allowance.

List of Abbreviations (Cont.)

RDS : Respiratory distress syndrome.

REM : Rapid eye movement phase of sleep.

ROS: Reactive oxygen species.
RPE: Retinal binding epithelium.
RSV: Respiratory syncytial virus.
S.pneumoniae: Streptococcus pneumoniae.
SABA: Short acting B2 agonist.
SDB: Sleep disordered breathing.

Se : Selenium.

SIGN : Scottish Intercollegiate Guidelines Network.

SMC : Smooth muscle cell.

SPAG2 : Small Particle Aerosol Generator Model2.

TGFB1 : Transforming growth factor-β1.

Th : Helper T cell.
TLR : Toll like receptor.

TNF : Tumor necrosis factor.

Treg : Regulatory T cell.

uLTE4 : Urinary leukotriene E4. URT : Upper respiratory tract .

UV : Ultra violet.

VDR : Vitamin D receptor.

ZIP : Gene family works as metal transporter

protein.

Zn : Zinc.

ZnT : Zinc Transporter.

 α -TTP : α -tocopherol transfer protein.

List of tables

Table	Title	Page
1	phenotypes terms of wheeze	10
2	Investigations according to the doubtful diagnosis of wheeze	26
3	Modified asthma predictive index (mAPI)	30
4	Modified bronchiolitis severity score	44
5	effect of micronutrients on neonatal immune response	88
6	Food sources of vitamin C, vitamin E and pro-vitamin A carotenoids in Spain and the USA	95
7	Recommended Dietary Allowances [RDAs] for Zn /per day	122
8	Demographic data of the two studied groups	130
9	History and risk factors of the two studied groups	131
10	General examination of the two studied groups	133
11	Clinical data of the cases group	134
12	Laboratory findings of the two studied groups	136
13	Relation between Zn level and demographic data among the studied wheezers	137
14	Relation between Zn level and History & risk factors among the studied wheezers	138
15	Relation between Zn level & general examination of the cases group	140
16	Relation between Zn level & Clinical data of the cases group	141

List of tables (Cont.)

Table	Title	Page
17	Relation between laboratory finding and	143
	zn level in cases group	
18	Correlation between different parameters	144
	and serum and hair Zn level in the two	
	studied groups	
19	Validity of Zn level as a detecting tools	145
	for severity of wheeze	

List of Fig.s

Fig.	Title	Page
1	Anatomical differences between adult	8
	and child's respiratory system	
2	Anatomical differences between adult	8
	and child's respiratory system	
3	Normal histology of respiratory system	9
4	Infant and Preschool wheeze	31
5	Approach to the wheezing infant	32
6	Bronchiolitis	39
7	Bronchiolitis	46
8	Bronchiolitis with pneumonia	46
9	Common causes of Sleep Apnea	59
10	Enlarged tonsils in patient with	60
	obstructive sleep apnoea under general	
	anaesthetic for adenotonsillectomy	
	(endotracheal tube and tonsillar gag are	
	visible)	
11	Pathophysiology of Obstructive Sleep	63
	Apnea	
12	different phenotypes of asthma	75
13	Histological features of respiratory	78
	system in normal (a) and during the	
	attack of asthma (b)	
14	(a)(normal bronchial tube) and (b)	78
	(inflamed bronchial tube)	
15	step up step down protocole of asthma	85
	pharmacological treatment	

List of Fig.s

Fig.	Title	Page
16	Structure of vitamin D3 (cholecalciferol) and vitamin D2 (ergocalciferol) and their precursors. 7-Cholecalciferol is produced in the skin from 7-dehydrocholesterol on exposure to sunlight	90
17	Vitamin D metabolism and activation to the steroidal hormone calcitriol (1,25-dihydroxyvitamin D). VDR indicates vitamin D receptor	91
18	Metabolism of Vitamin D.Vitamin D2 and Vitamin D3 are enzymatically hydroxylated to 25-hydroxyvitamin D in the liver and 1,25 dihydroxyvitamin D by the kidneys. 1,25 di-hydroxyvitamin D2 and 1,25 di-hydroxyvitamin D3 are the biologically active forms of vitamin D	92
19	Anti-oxidant activity of α-tocopherol	98
20	Cysteine, Methionine, Selenium containing analoge	110
21	Diagram of human carbonic anhydrase enzyme with Zinc atom visible in the center	116
22	The Zinc ion (green) coordinated with two histidine side chains in Zinc fingers	117
23	ROC Curve for detecting serum Zn cut off for wheeze severity	145

List of Boxes

Box.	Title	Page
1	Causes of wheezing in infants.	15
2	Guidelines for diagnosis and	55
	management of bronchiolitis	
3	Etiology of Obstructive Sleep Apnea	59
4	features suggesting a diagnosis of	81
	asthma in children≤ 5 years	

Introduction

Infantile wheezing, which includes viral associated wheeze and asthma, are amongst the most common reasons for children to present urgently to a doctor (*Saglani and Bush*, 2007).

Many children exhibit symptoms of bronchial obstruction before they are 5 years, especially wheezing and coughing. The results of cohort studies show a great deal of variation and indicate that between 10 and 80.3% of infants suffer at least one episode of wheezing during their first year of life, while 8 to 43.1% have three or more episodes, with lower prevalence rates in developed countries (*Mallol etal.*,2005).

Respiratory viruses, such as syncytial respiratory virus, rhinovirus, metapneumovirus, parainfluenza type 3 and influenza are associated with increased risk of wheezing among preschool children. In low income populations, pneumonia has been associated with recurrent wheezing. The risk of developing wheezing at the start of life is greater among male infants, children who attend daycare, children exposed to cigarette smoke and children in contact with high levels of endotoxins and allergens in room air, such as those produced by mites, cockroaches and animal hair. The International Study of Wheezing in Infants (EISL) was born of the need to trace the epidemiology of wheezing among infants (*Chong Neto and Rosário*, 2010).

A proposed mechanism related changes in dietary antioxidant intake to reduced lung antioxidant defenses, with increased airway susceptibility to oxidant damage resulting in airway inflammation and asthma (*Devereux and Seaton*, 2005).

Introduction and Aim of the Work

Trace elements play an important role in various physiological processes, and are crucial for proper functioning of the immune system (*EL-sayed and Aamer*, 2013).

Deficiency of trace elements and infectious diseases are often concomitantly observed and result in complex interactions (*Lukac and Massanji*, 2007).

The major trace elements such as zinc, selenium, copper, and magnesium have Immune modulatory effects and thus influence susceptibility and the course of a variety of infections (*EL-sayed and Aamer*, 2013).

This is mainly due to the fact that these elements are part of the structure of antioxidant enzymes. These enzymes act as antioxidant defense and are able to regulate the host immune system, and alter viral genome (*Lukac and Massanji*, 2007).

The dietary Zinc (Zn) plays essential roles in cellular metabolism and gene expression (*Murgia et al.*, 2006).

Zinc deficiency results in enhanced oxidative damage in the airways by causing infiltration of inflammatory cells and increased superoxide and nitric oxide production.

When zinc deficiency occurs in conjunction with acute lung injury or asthma, a more intense inflammation is produced (*Zalewski*, 2006).

Zinc deficiency has been linked to a group of respiratory disorders including pneumonia (*Brooks et al.*, 2004) cystic fibrosis (*Tudor et al.*, 2005) and asthma (*Riccioni and D'Orazio*, 2005).