

Faculty of Science Microbiology department

BIODEGRADTION OF HAZARDOUS WASTEWATER POLLUTANTS

A Thesis Submitted for the Requirements for the Degree of Philosophy Doctor of Microbiology

> By Rehab Gamal Hassan Ahmed M.Sc. Microbiology (2011)

> > **Supervised By**

Prof. Nagwa Ahmed Abdallah Prof. of Microbiology, Faculty of science, Ain-Shams University Prof. Salah A. Abo-El- Enein (D.Sc.)
Prof. of Physical Chemistry, Faculty of Science, Ain
Shams University

Prof. Maha Moustafa El Shafei

Prof. of sanitary and environmental engineering Housing and Building National Research Center

Prof. Rifaat Abdel Wahaab

Prof. of environmental science, water pollution Department, National Research Center

Dr. Arwa Hassan Soliman

Lecturer of microbiology, Faculty of Science Ain- Shams University

Microbiology Department

BIODEGRADTION OF HAZARDOUS WASTEWATER POLLUTANTS

A Thesis Submitted for the Requirements for the Degree of Philosophy Doctor of Microbiology

 $\mathbf{B}\mathbf{y}$

Rehab Gamal Hassan Ahmed

M.Sc. Microbiology (2011)
Assistant researcher
Sanitary and environmental Institute
Housing and Building National Research Center

Microbiology Department Faculty of science, Ain- Shams University 2017

Faculty of Science Microbiology department

Approval Sheet

Name: Rehab Gamal Hassan Ahmed

Title: "Biodegradation of hazardous wastewater pollutants"

This thesis for PhD. Degree has been approved by the following committee:

1. Dr. Nagwa Ahmed Abd Allah:

Prof. of Microbiology, Faculty of science, Ain- Shams University.

2. Dr. Salah Abd El Ghani Abo El Enin:

Prof. of Physical Chemistry, Faculty of Science , Ain Shams University

3. Dr. Maha Moustafa El Shafei:

Prof. of Chemical Engineering, Housing and Building National Research Center

4. Dr. Rifaat Abdel Wahaab

Prof. of environmental science, water pollution Department, National Research Center

5. Dr. Arwa Hassan Soliman

Lecturer of microbiology, Faculty of Science, Ain- Shams University

<u>Acknowledgment</u>

All of my thanks go to Allah almighty for all his blessings and by the grace and mercy of whom this work has been carried out.

It is really too hard for me to search and find the words those could express my sincere respects, thanks and gratitude to my supervisors, Dr. Nagwa Ahmed Abd Allah Prof. of Microbiology, Faculty of science, Ain- Shams University for her guiding, encouragement and scientific assistance and Dr. Maha Moustafa El Shafei Prof. of Chemical Engineering, Housing and Building National Research Center for her guiding, continuous help. encouragement and assistance throughout the course of this work. I am also grateful to Dr. Rifaat Abdel Wahaab Prof. of environmental science; water pollution Department, National Research Center for introducing me into this study. Also, I would like to express sincere thanks to Dr. Arwa Hassan Soliman Lecturer of microbiology, Faculty of Science Ain- Shams University. My deep gratitude to Dr. Salah A. Abo-El- Enein Prof. of Physical Chemistry Faculty of Science, Ain Shams university for his guiding and continuous help.

Finally, my great respect and gratitude to everyone who participated in completion of this work especially my family.

Rehab Gamal Hassan Ahmed

List of contents

List of contents

Subject	Page
List of contents	I
List of abbreviations	VII
List of tables	VIII
List of figures	X
Abstract	XV
Introduction	1
Aim of Work	4
Chapter one Literature Review	
1.1 Environmental pollution	5
1.2 Pollution and pollutants	5
1.3Types of pollution	5
1.3.1Air pollution	6
1.3.2 Soil Pollution	6
1.3.3 Water pollution	6
1.4 Types and Sources of Water Pollution	7
1.5 Petroleum Resources Formation and Production	9
1.5.1Conventional and Nonconventional Oil and Gas	9
1.5.2 Oil and gas in Egypt	9
1.5.3 Crude oil	10
1.5.4 Natural Gas	12

Subject	Page
1.5.5 Shale oil	13
1.6 Produced water	14
1.6.1Produced Water Characteristics	15
1.6.2 Major Components of Produced water	16
1.6.2.1 Produced Water from Oil Production	16
1.6.2.2 Produced Water from Gas Production	17
1.6.2.3Produced Water from Coal Bed Methane (CBM) Production	18
1.6.3 Constituents of Produced water from conventional oil and gas Production	19
1.6.4 Factors affecting production volume of produced water	28
1.7 Current Produced Water Management Practices	31
1.8 Environmental Impacts Caused by Produced Water	33
1.9 Technologies used in Produced water treatment	35
1.10 Treatment methods	37
1.10.1Physical treatment	37
1.10.2 Chemical treatment	39
1.10.3 Membrane treatment processes	41
1.10.4 Biological treatment processes	42

Subject	Page
1.11.Reuse of treated produced water	54
1.12 Potential beneficial use options for produced water include	55
Chapter two Material & Methods	
2.1 Company information	56
2.2Description of the Treatment plant in New Damietta	56
2.3 Sampling of produced water	58
2.3.1 Samples for microbiological analysis	58
2.3.2 Samples for chemical analysis	58
2.3.3 Description of the column used in this study	59
2.4 Techniques and methods for chemical analysis and identification of the best isolated strains	60
2.4.1 Tests for identification of the chemical composition of produced water before, during and after addition of bacterial isolates	60
2.4.1.1 Ammonia (NH ₄)	60
2.4.1.2 Chemical Oxygen Demand	60
2.4.1.3 Biological Oxygen Demand	62
2.4.1.4. Phosphorus	63
2.4.1.5. Total suspended solids	64
2.4.1.6. Nitrate nitrogen (NO ₃)	66
2.4.1.7. pH measurement	67

Subject	Page
2.4.1.8. Total Organic Carbon	67
2.4.1.10. Total Dissolved Solids	68
2.4.1.11. Total Suspended Solids	68
2.4.2 Tests for identification of the bacterial count and spore former bacteria in produced water before, during and after addition of bacterial isolates	69
2.4.2.1.Nutrient agar medium(NA)	69
2.4.2.2.Spore formation	69
2.4.2.3 Isolation media	69
2.4.2.4 Purification of isolated bacteria	70
2.4.2.5 Determination of the bio- degradation kinetics of the selected isolated bacteria	71
2.4.2.6.Gram reaction for the most potent degrading bacterial isolates	71
2.4.2.7. Catalase test	72
2.4.2.8. Starch hydrolysis	72
2.4.2.9. Casein hydrolysis test	73
2.4.2.10 Gelatin hydrolysis test	73
2.4.2.11 Urea hydrolysis test	74
2.4.2.12 Glucose fermentation test	75

Subject	Page
2.4.2.13 H ₂ S production test	75
2.4.2.14. Indole production test	76
2.4.2.15.Citrate utilization test	77
2.4.2.16. Identification of the most potent degrading bacterial isolate	78
2.4.2.17. Immobilization of the best degrading bacterial isolates on Caalginate beds	79
Chapter three Results	
3.1 Biological analysis of produced waste water	82
3.2 Purification and enrichment of isolated bacterial strain	87
3.3 Chemical Characteristics of produced waste water	88
3.4 Effect of PH value on produced waste water biological treatment	92
3.5 Effect of nutrients adjustment during biological produced waste water treatment	103
3.6 Chemical examination of produced water after the addition of the isolated strains during biological treatment of produced waste water	110
3.7 Identification of the best three strains in the biological treatment of produced waste water	130

List of contents

Subject	Page
3.8 Identification of the best three strains by biolog system	132
3.9 Immobilization of bacterial isolates on alginate gel	133
3.10 Comparison between three different reactors with different conditions in biological produced waste water treatment	143
Discussion	150
Conclusions	161
English summary	162
References	165
Arabic summary	185

List of Abbreviations

List of Abbreviations

Abbreviations	Full term
BOD ₅	Biological oxygen demand
BP	British petroleum
BTEX	Benzene, toluene, ethyle benzene and xylene
CBM	Coal Bed Methane
CFU	Colony forming unit
COD	Chemical oxygen demand
EDF	Egyptian Drilling Facility
EO	Essential oils
GAB	General aerobic bacteria
НОВ	Hydrocarbon oxidizing bacteria
NORM	Natural occurring radioactive material
OPEC	Organization of Petroleum Exporting Countries.
PCB's	Polychlorinated biphenyls
SOB	Sulphur Oxidizing bacterial
SRB	Sulphate reducing bacteria
TCE	Trichloroethene
TDS	Total dissolved solids
TOC	Total organic compound
TS	Total solids
TSS	Total suspended solids
VSS	Volatile suspended solids

List of Tables

List of Tables

Table number	Page
Table (1):Growth rate of bacteria without addition of	82
nutrients	02
Table (2): Growth rate of bacteria with addition of nutrients	84
Table (3): Morphology of isolated colonies on nutrient agar	86
Table (4): Chemical characteristics of raw sample collected (produce water)	88
Table (5): Minimum, maximum and average range of raw sample collected (produced water)	90
Table (6): Efficiency of the treatment process using different sludge volumes at different pH values	93
Table (7): Efficiency of treatment process using two reactors	103
Table (8): Effect of detention time on COD removal from produced water using different isolated bacterial strains	110
Table (9): Effect of detention time on BOD ₅ removal of produced water using different isolated bacterial strains	114
Table (10): Effect of detention time on TSS removal from produced water using different isolated bacterial strains	118
Table (11): Effect of detention time on TDS removal from produced water using different isolated bacterial strains	122
Table (12): Effect of detention time on oil& grease removal from produced water using different isolated bacterial strains	126
Table (13): Biochemical test for the three strains	130
Table (14) : Effect of detention time on COD removal from produced water	133