VITAMIN A AND E IN EPILEPTIC PATIENTS

Thesis

Submitted for Partial Fulfillment of Master Degree in Pediatric

By

Ahmed Mohamed Atteya

M.B., B.ch (2002)

Supervisors

Prof. Dr. Nancy Abd El-Aziz Soliman

Professor of Pediatrics Faculty of Medicine, Ain Shams University

Dr. Rania Hamed Shatla

Lecturer of Pediatrics Faculty of Medicine, Ain Shams University

Dr. Hala Abdel Al Ahmed

Lecturer of Clinical and Chemical Pathology Faculty of Medicine, Ain Shams University

> Faculty of medicine Ain –Shams University 2010

<u> Dedication</u>

To my sweet family
My lovely wife
My little daughter

This work would have never come true without your support, generosity and encouragement.

Acknowledgment

First, thanks are all to *ALLAH* for blessing this work until it has reached its end.

I wish to express my deep gratitude to *Prof. Dr/ Nancy Abd El-Aziz Soliman*, Professor of Pediatrics, Ain Shams University, for her kind guidance and great help.

I am greatly indebted to *Dr/ Rania Hamed Shatla*, Lecturer of Pediatrics, Ain Shams University, who assisted me in assembling the finest details of this work and gave me from her time, knowledge, continuous support and sincere encouragement.

I would like also to express my sincere gratitude to *Dr/ Hala Abdel Al Ahmed*, Lecturer of Clinical and chemical Pathology, Ain Shams University, for the great help she gave me, and the great effort she has done. Last but not least, I am very grateful to the patients and their parents for their cooperation and I deeply hope better health for them.

List of Contents

Page
List of Abbreviations
List of Tables
List of FiguresVII
Introduction & Aim of the work
Review of literature:
• Epilepsy
• Vitamin A 52
• Vitamin E68
Subjects & Methods8
Results8
Discussion109
Summary & Conclusion118
Recommendations122
Appendices123
References
Arabic summary

List of Abbreviations

ADHD	Attention-deficit/ hyperactivity disorder
AED	Antiepileptic Drugs.
BECTS	Benign childhood Epilepsy with Centro Temporal Spikes.
CBZ	Carbamazepine.
CHD	Chronic Heart Diseases
CNS	Central Nervous System
CPS	Complex Partial Seizures.
CSF	Cerebro-Spinal Fluid.
CT	Computerized Tomography.
CVD	Cardio Vascular Diseases
EEG	Electro-Encephalo Graphy.
EPI	Expanded Program on Immunization.
FDA	Food and Drug Administration.
FNB	Food and Nutrition Board
GABA	Gama Amino Butyric Acid.
GTC	Generalized Tonic-Clonic.
HDL	High-Density Lipoprotein.
HPLC	High Performance Liquid Chromatography
IBE	International Bureau for Epilepsy.
IGE	Idiopathic Generalized Epilepsy.
ILAE	The International League Against Epilepsy.
IU	International Units.

K+	Potassium.
KD	Ketogenic Diet.
LDL	Low-Density Lipoprotein.
LOAEL	Lowest Observed Adverse Effect Level.
LPO	Lipid Per Oxidation.
LTG	Lamotrigine.
MMA	Methyl Malonic Acid.
MRI	Magnetic Resonance Imaging.
MRS	Magnetic Resonance Spectroscopy.
Na	Sodium.
NOAEL	No-Observed-Adverse-Effect Level.
PB	Phenobarbitone
PET	Positron Emission Tomography.
PTZ	Pentylenetetrazole.
RA	Retinoic Acid.
RAE	Retinol Activity Equivalents.
RDA	Recommended Dietary Allowance.
ROS	Reactive Oxygen species.
RSV	Respiratory Syncytial Virus.
SE	Status Epilepticus.
SMR	Standarised Mortality Ratio.
SPECT	Single Photon Emission Computerized Tomography.
Т3	Tocotrientol
TCS	Tonic Clonic Seizure.

TNS	Trigeminal nerve stimulation.
TOC	Tocopherol
UL	Tolerable Upper Levels.
VAD	Vitamin A Deficiency.
VNS	Vagus Nerve Stimulation.
VPA	Valproate.
WHO	World Health Organization.

List of Tables

Table No.	Page
Table (1):	Elements of a definition of epilepsy 6
Table (2):	Mendelian idiopathic epilepsy syndromes with genes identified by positional cloning
Table (3):	Causes of seizures
Table (4):	International classification of epileptic seizures
Table (5):	The international league against epilepsy (ILAE) classification of epilepsy and epilepsy syndromes
Table (6):	Summary of populations who do and do not warrant imaging
Table (7):	Laboratory studies after the first seizure (non neonatal)
Table (8):	Nonepileptic Paroxysmal Disorders 33
Table (9):	Conditions that can cause a single seizure or transient epileptic disorder 35
Table (10):	Considerations in selecting an antiepileptic drug
Table (11):	Antiepileptic drugs
Table (12):	Historical overview of VNS therapy 48

Table (13):	Determinants of seizure outcome in
Table (15).	childhood epilepsy
Table (14):	RDA of vitamin A values in both
	micrograms of RAE and (IU)55
Table (15):	Tolerable upper level (UL) for vitamin A
	intake56
Table (16):	Non antioxidant and regulatory
	functions of vitamin E71
Table (17):	RDA for alpha-tocopherol77
Table (18):	Tolerable Upper Intake Level (UL) for
	Alpha-Tocopherol
Table (19):	Vitamin A and vitamin E kit content 85
Table (20):	Sample and standard preparation 86
Table (21):	Descriptive clinical data of the patients
	groups
Table (22):	Age distribution in the studied groups 91
Table (23):	Sex distribution in the studied groups 91
Table (24):	Comparison between patients groups as
	regard seizure type
Table (25):	Comparison between patients groups as
	regard EEG grades
Table (26):	Comparison between patient groups as
	regard sex and Vitamin A level

Table (27):	Comparison between patient groups as regard sex and Vitamin E level
Table (28):	Comparison between patient groups as regard age and Vitamin A level
Table (29):	Comparison between patient groups as regard age and Vitamin E level
Table (30):	Comparison between patient groups and control group as regard Vitamin A level 96
Table (31):	Comparison between group A (newly diagnosed) and groups B1+B2 (patient on AED therapy) as regard vitamin A level
Table (32):	Comparison between group B1 (monotherapy) and group B2 (polytherapy) as regard vitamin A level 98
Table (33):	Comparison between patient groups and control group as regard Vitamin E level 99
Table (34):	Comparison between group A (newly diagnosed) and groups B1+B2 (patients on AED therapy) as regard Vitamin E level
Table (35):	Comparison between group B1 (monotherapy) and group B2 (Polytherapy) as regard Vitamin E level 101

Table (36):	Comparison between vitamin A and
	seizure type in patients groups 102
Table (37):	Comparison between vitamin E and seizure type in patients groups
Table (38):	Correlation between Vitamin A & E and severity score
Table (39):	Correlation between Vitamin A & E and seizure duration
Table (40):	Correlation between Vitamin A & E and EEG grades

List of Figures

Figure No.	Page
Figure (1):	The structure of retinol 52
Figure (2):	Chemical structures of Toc and T369
Figure (3):	Typical chromatogram of vitamin A and E
Figure (4):	Seizure types in patient groups
Figure (5):	EEG grades in patient groups90
Figure (6):	Comparison between patient groups and control group as regard Vitamin A level 96
Figure (7):	Comparison between group A (newly diagnosed) and groups B1+B2 (patient on AED therapy) as regard Vitamin A level
Figure (8):	Comparison between group B1 (monotherapy) and group B2 (Polytherapy) as regard Vitamin A level 98
Figure (9):	Comparison between patient groups and control group as regard Vitamin E level 99

rigure (10).	diagnosed) and groups B1+B2 (patients on AED therapy) as regard Vitamin E level
Figure (11):	Comparison between group B1 (monotherapy) and group B2 (Polytherapy) as regard Vitamin E level 101
Figure (12):	Correlation between Vitamin A and severity score
Figure (13):	Correlation between Vitamin E and severity score
Figure (14):	Correlation between Vitamin A and seizure duration
Figure (15):	Correlation between Vitamin E and seizure duration
Figure (16):	Correlation between Vitamin A and EEG grades
Figure (17):	Correlation between Vitamin E and EEG grades

Introduction

An epileptic seizure is a transient occurrence of signs and/or symptoms due to abnormal excessive or synchronous neuronal activity in the brain. Epilepsy is a disorder of the brain characterized by an enduring predisposition to generate epileptic seizures and by the neurobiologic, cognitive, psychological, and social consequences of this condition. The definition of epilepsy requires the occurrence of at least one epileptic seizure (Fisher et al., 2005).

Epilepsy is usually controlled by the administration of antiepileptic drugs; the type of seizure and the specific epileptic syndrome play the major role in the selection of anticonvulsants, probably because of the different pathophysiologic mechanisms (Kaindl et al., 2006).

Increased excitatory amino acid transmission and decreased GABAergic inhibitory responses seem to be important mechanisms in the genesis of convulsions, where reactive oxygen species (ROS) have recently been suggested to play a critical role. Therefore, administration of antioxidants may be potentially beneficial for the treatment of convulsive states (Rebeiro et al., 2005).

The brains of people with epilepsy are under considerable oxidative stress from free radicals. Studies have shown that epileptics are low in many antioxidants, including vitamin A and vitamin E (Sudha et al., 2001).

The role of vitamin A and its derivatives, the retinoids, in the function of the mature central nervous system has recently been described (Malik et al., 2000; Lane and Bailey, 2005).

Vitamin E prevents the damaging effects of oxidation in brain tissues; it is a natural nutrient that works to stabilize the membranes of cell (Ayyildiz et al., 2005).

Vitamin E prevents the increase of lipid peroxides and neuronal death in hippocampus and reduces the seizure-induced neurodegeneration in cultured hippocampal cells (Artemowicz, 2005).

Decrease vitamin E levels have been reported in epileptic children receiving antiepileptic drugs (Kataoka et al., 1990), and this depletion is significant when combined with studies showing the power of vitamin E to help the body control epileptic seizure activity (Ogunmekan et al., 1979a).

Epileptic patients who are on valproic acid therapy have reduced plasma concentrations of antioxidant vitamins and these reductions are reversible after VPA withdrawal (Verrotti et al., 2008).