Ain Shams University Faculty of Science Chemistry Department

New Photo analytical Methods for the assessment of some materials of industrial potential

A Thesis

Submitted for the Degree of Master of Science As Partial Fulfillment for Requirements of Master of Science "Chemistry Department"

By

Ahmed Tawfik Ahmed Sayed Ahmed Selim

B.Sc. in Zoology and Chemistry, Faculty of Science
Mansoura University
2005

Under Supervision of

Prof.Dr. Mohamed Said Attia

Professor of Analytical Chemistry, Faculty of Science, Ain Shams University

Dr.Ahmed Osman Youssef

Associate Professor of Analytical Chemistry, Faculty of Science, Ain Shams University

To
Department of chemistry
Faculty of science
Ain shams university
For
The degree
M.SC.in analytical chemistry

(2018)

Ain Shams University Faculty of Science Chemistry Department

Approval Sheet

New Photo analytical Methods for the assessment of some materials of industrial potential

 $\mathbf{B}\mathbf{y}$

B.Sc. in Zoology, Chemistry, Faculty of Science
Mansoura University
2005

Under the supervision of:

Prof.Dr. Mohamed Said Attia

Professor of Analytical chemistry, Faculty of Science, Ain Shams University

Dr.Ahmed Osman Youssef

Associate Professor of Analytical chemistry, Faculty of Science, Ain Shams University

Head of Chemistry Department Prof. Dr. Ibrahim Badr

Ain Shams University Faculty of Science Chemistry Department

Approval Sheet

New Photo analytical Methods for the assessment of some materials of industrial potential

 $\mathbf{B}\mathbf{y}$

Ahmed Tawfik Ahmed Sayed Ahmed Selim

B.Sc. in Zoology, Chemistry, Faculty of Science Mansoura University 2005

Under the supervision of:

Prof.Dr. Mohamed Said Attia

Professor of Analytical chemistry, Faculty of Science, Ain Shams University

Dr.Ahmed Osman Youssef

Associate Professor of Analytical chemistry, Faculty of Science, Ain Shams University

This thesis for Master degree has been approved by:

Prof.Dr. Mohamed Said Attia

Professor of Analytical and Photo chemistry, Faculty of Science, Ain Shams University

Prof.Dr. Mohamed El Sayed Mahmoud

Professor of Analytical chemistry, Faculty of Science, Alexandria University

Prof.Dr. Magda Ali Abd El Aziz

Professor of Analytical chemistry, Faculty of Science, Mansoura University

Dr. Ahmed Osman Youssef

Associate Professor of Analytical chemistry, Faculty of Science, Ain shams University

Head of Chemistry Department **Prof. Dr. Ibrahim Badr**

Highly sensitive Eu³⁺ doped in sol-gel matrix optical sensor for the assessment of Ciprofloxacin in different real samples

M. S. Attia, A. O. Youssef, A. M. Ismael, R. Gaafer, A. Adel, A. Twfik, A. Wafeey, H. G. Afify, A. Sayed ¹Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt

Abstract

The efficiency of excited-state interaction between Eu³⁺ doped in sol- gel matrix and the industrial product ciprofloxacin of (CFX) has been studied in different solvent and pHs. A high luminescence intensity peak at 617 nm of europium- ciprofloxacin complex at λ_{ex} =365 nm in acetonitrile was obtained. The photophysical properties of the red emissive Eu³⁺ complex doped in sol-gel matrix have been elucidated, the europium was used as optical sensor for the assessment of ciprofloxacin in the pharmaceutical tablets and serum samples at pH 8.0 and λ_{ex} = 365 nm with a concentration range of 5.0 $\times 10^{-9}$ - 1.0 $\times 10^{-6}$ mol L⁻¹ for ciprofloxacin, correlation coefficient of 0.99 and detection limit of 1.65 $\times 10^{-9}$ mol L⁻¹.

Keywords:

Photo probe (I) = (4Z)-4-(1H-Indol-3-ylmethylene)-2,5-diphenyl-2,4-dihydro-3H-pyrazol-3-one;Ciprofloxacin; Bis(dialkylamino)phenoxazinium;Europium(III);Enhancing; Luminescence; Optical sensor; Sol-Gel;

Content		i
List of figure	es	v
List of tables	S	viii
List of abbro	eviations	ix
Aim of the w	vork	XXX
Chapter I:Ir	troduction	1
1.	Introduction	1
1.1	The Fluorescence Process	1
1.1.1	Absorption and emission spectra	3
1.2	Fluorometry	4
1.2.1	The advantage of fluorometric technique	6
1.3	Fluorescent Resonance Energy Transfer	7
1.4	Fluorescence Spectra and Stokes Shift	9
1.5	Fluorescence lifetime	10
1.6	Quantum yield	11
1.7	Environmental Influence on Fluorescence Properties	12
1.8	Quenching of Fluorescence	13
1.8.1	Theory of collisional quenching	15
1.8.2	Theory of Static Quenching	16
1.9	Fluorescence sensing	17
1.9.1	Mechanisms of Sensing	18
1.10	Fluorophores	20
1.10.1	Fluorescent organic probes	21
1.10.2	Quantum dots	23
1.10.3	Photobleaching	24
1.11	Literature Review	26

Chapter II	A Novel Method for the Assessment of 3- Nitrotyrosine in serum Using A New Photo Probe	35
2	Introduction	35
2.1	Structural of photo probe (I)	37
2.2	Standard method	38
2.3	Experimental	39
2.3.1	Chemicals	39
2.3.2	Apparatus	39
2.3.3	Material and method	40
2.4	Spectral characteristics	40
2.4.1	Absorption spectrum	40
2.4.2	Emission spectra	41
2.4.3	Effect of Solvent	42
2.4.4	Effect of PH	43
2.5	Calibration graph and detection limit	44
2.6	Accuracy and precision of the method	47
2.7	Conclusion	49
Chapter III	A Novel Method for the Assessment of zinc in seminal fluid Using A New Photo ProbeBis(dialkylamino)phenoxazinium	50
3	Introduction	50
3.1	Structural of photo probe(II)	52
3.1.1	Preparation of photo probe	52
3.2	Standard method	53
3.2.1	Assay procedure	53
3.3	Experimental	54
3.3.1	Chemicals	54

3.4.2	Apparatus	54
3.3.3	Proposed methods	55
3.4	Spectral characteristics	55
3.4.1	Absorption spectrum	56
3.5	Emission spectra	57
3.5.1	Effect of Solvent	58
3.5.2	Effect of pH	58
3.6	Calibration graph and detection limit	59
3.7	Accuracy and precision of the method	61
3.8	Conclusion	64
Chapter IV	Highly sensitive Eu ³⁺ doped in sol-gel matrix optical sensor for the assessment of Ciprofloxacin in different real samples	65
4	Introduction	67
4.1	Experimental	67
4.1.1	Apparatus	67
4.1.2	Materials	67
4.1.3	Reagents	67
4.1.4	Synthesis of Eu- (CFX) complex-Doped in sol gel	68
4.1.5	General procedure	69
4.1.6	Determination of ciprofloxacin in serum	69
4.1.7	pharmaceutical Determination of ciprofloxacin in serum solution	69
4.2	Result and Discussion	70
4.2.1	Absorption Spectra.	70
4.2.2	Effect of experimental conditions on the optical properties of (CFX) and Eu ³⁺ doped in sol gel matrix	71
4.2.2.1	Effect of the amount of (CFX) and Eu ³⁺	71
4.2.2.2	Effect of solvent	71

4.2.2.3	Effect of pH	73
4.2.2.4	Emission spectra.	74
4.2.3	Analytical performance.	75
4.2.3.1	Analytical parameter of optical sensor method	75
4.2.3.2	Selectivity	77
4.2.3.3	Application to formulations	80
4.3	Conclusion	80
5	References	81
Summary		104
Arabic sur	mmarv	Í

Acknowledgment

First and last thanks to Allah who give me the power to go forward in a way illuminated with his merciful guidance.

I would like to express my thanks toprof, Dr. Mohamed Said Professor of Analyticaland Photochemistry,

FacultyofScience, Ain Shams University who helped me greatly, useful guidance effective contributions, and gave me the confidence to express my ideas freely,

Dr. Ahmed Osman Associate Professor of Analytical chemistry, Faculty of Science, Ain Shams University for his efforts & co-operation.

In addition, I would like to thank my family.

Aim of the work

Development and introduction of modern analytical techniques with high sensitivity and selectivity with low cost for assessment of 3-Nitrotyrosine in serum and assessment of zinc in semen sample to achieve this goal it's intended to

- 1) Study and characterization of two organic photo probesin which their emission affected by zinc and 3-nitrotyrosine
- 2) Study of the absorption and emission of the photo probes and the different factors affecting in their emission such as p^H, solvent.
- 3) Using optimum condition for assessment of zinc, Ciprofloxacin and 3-nitrotyrosinein different real samples.