

BIOLOGICAL TREATMENT OF PLASTIC POLYETHYLENE WASTES AND SOME HAZARDOUS ELEMENTS BY PLEUROTUS PULMONARIUS

Thesis

Submitted for Ph.D. Degree in Microbiology

By

Bassant Mohammed Ibrahim Hashem

B.S.c. Microbiology- Chemistry (2002)

M.Sc. in Microbiology (2009)

In Microbiology

Faculty of Science Ain Shams University

2015

BIOLOGICAL TREATMENT OF PLASTIC POLYETHYLENE WASTES AND SOME HAZARDOUS ELEMENTS BY *PLEUROTUS PULMONARIUS*

Thesis Submitted for Ph.D. Degree in Microbiology

Bassant Mohammed Ibrahim Hashem

B.S.c. Microbiology- Chemistry (2002)

M.Sc. in microbiology (2009)

Supervised By

Prof. Dr. Fawkia Mohammed El-Beih

Professor of Microbiology Faculty of Science Ain Shams University

Prof. Dr. Samir Mostafa Abd El-Aziz

Professor of Radio-Biochemistry Atomic Energy Authority Egypt

Prof. Dr. Saadia Mohammed Hassanein

Professor of Microbiology Faculty of Science Ain Shams University

Dr. Hosam El-Din El-Sayad Taha El-Halby

Lecturer of microbiology at Middle Eastern Regional Radioisotope Center for the Arab Countries

Faculty of Science

Name: Bassant Mohammed Ibrahim Hashem

Title: Biological treatment of plastic polyethylene wastes and

some hazardous elements by Pleurotus pulmonarius

Supervised By

1) Prof. Dr. Fawkia Mohammed El-Beih

Professor of Microbiology, Faculty of Science Ain Shams University

2) Prof. Dr. Samir Mostafa Abd El-Aziz

Professor of Radio-Biochemistry, Atomic Energy Authority, Cairo, Egypt

3) Prof. Dr. Saadia Mohammed Hassanein

Professor of Microbiology, Faculty of Science, Ain Shams University

4) Dr. Hosam El-Din El-Sayad Taha El-Halby

Lecturer of microbiology at Middle Eastern Regional Radioisotope Center for the Arab Countries

بسم الله الرحمن الرحيم

(سبحانك لا علم لنا الا ما علمتنا انك انت العليم الحكيم)

صدق الله العظيم

Approval sheet

Candidate Name: Bassant Mohammed Ibrahim Hashem

Thesis Title: Biological treatment of plastic polyethylene wastes and some hazardous elements by *Pleurotus pulmonarius*

Degree: Ph.D. degree in microbiology

Supervisors: Signature

1-Prof. Dr. Fawkia Mohammed El-Beih

2-Prof. Dr. Samir Mostafa Abd El-Aziz

3-Prof.Dr. Saadia Mohammed Hassanein

4-Dr. Hosam El-Din El-Sayaad Taha El-Halby

Approval Stamp Date of Approval

/ / 2015 / / 2015

Approval of Faculty Council Approval of University Council

/ / 2015 / / 2015

ACKNOWLEDGEMENT

I am deeply thankful to ALLAH for showing me the right path and helping me to complete this work.

My profound gratitude and appreciation to **Dr. Fawkia Mohammed El-Beih,** Professor of Microbiology, Faculty of Science,

Ain Shams University for suggesting the topics, her advices and reading the manuscript.

I would like to express my appreciation to **Dr. Samir Mostafa Abd El-Aziz,** Professor of Radio-Biochemistry, Radioisotope department, AEA, for his kind supervision and advices offered to accomplish this work.

I'm thankful to **Dr. Saadia Mohammed Hassanein,** Professor of Microbiology, faculty of science, Ain Shams University for her interest in the work presented here many valuable efforts constructing the data, the practical part of this thesis and revising this work.

I would like to express my appreciation to **Dr. Hosam El-Din El-Sayad Taha El-Halby** Lecturer of Microbiology at Middle Eastern Regional Radioisotope Center for the Arab Countries for suggesting the topics and assessing the work giving much of his time and effort in constructing the data, the practical part of this thesis and revising this work.

Finally, my great respect and gratitude to every body who participated in completion of this work.

Bassant mohammed

DEDICATION

I would like to dedicate this work to my parents and my husband for their encouragement, putting up with me and supporting me through all this work.

Many thanks to all of them

Bassant mohammed

Abstract

Plastic material is one of the most serious solid wastes pollution and it's accumulation in the environment is highly resistant to biodegradation. Mushrooms are being used to break down previously harmful material. On the other hand, Heavy metals are known to act as a general protoplasmic poison, Mushrooms can act as effective biosorbent of toxic metals. The main aim of this study is to grow mushroom (*Pleurotus pulmonarius*) on different plastic polyethylene wastes and liquid waste contaminated with heavy metals as a new biological technique which help environment to get off them by safe biological technique.

Pleurotus pulmonarius was grown on determined weight of different plastic polyethylene wastes namely; wet straw, non irradiated plastic, irradiated plastic, mixture of straw and non irradiated plastic and mixture of straw and irradiated plastic. The spawn of Pleurotus pulmonarius was irradiated by gamma irradiation at doses 0.5, 1 and 2 KGy, and inoculated on each different wastes separately to activate the growth of Pleurotus pulmonarius on them.

The behavior of non irradiated *Pleurotus pulmonarius* after growth was also studied by detecting the changes in enzymatic activities (cellulase, xylanase, laccase) and total protein content of mushroom. Cellulase and xylanase enzymes gave maximum value after first harvest. Although laccase activity gave maximum values after 18 days (mycelial stage), but total protein content increased remarkably with incubation period. The spawn of *P. pulmonarius* was irradiated at the does 0.5, 1 and 2 KGy, and inoculated on each different wastes separately to detect the enzymatic activities (cellulase, xylanase, laccase) and total protein content; which were increased in the various wastes by exposing the spawn of *P. pulmonarius* to gamma irradiation and detectable raises in the enzymes

activities and total protein content were recorded at dose 0.5 KGy, Any further increase in the irradiation dose was accompanied by a decrease in enzymes activities and total protein content until reach lowest value at 2 KGy.

The present study showed that the treated polymers by mushroom were more fragile, less resistant to the breaks or fragmentations when discarded in the environment and can be more susceptible to mineralization than those waste plastics without fungal treatment but infra red analysis for treated polymers don't showed any changes.

There was variation between heavy metals in the effect of their concentration in growth of *Pleurotus pulmonarius* so that Zn gave maximum growth at 50 µg\ml but *Pleurotus pulmonarius* unable to grow at the same concentration for each heavy metal Co and Ni, although it was grown at 100 µg\ml for Pb. On the other hand, *Pleurotus pulmonarius* was grown at 10 µg\ml for Co, at 15 µg\ml for Ni. These concentrations considered presublethal concentrations which mean that the maximum concentration of heavy metal after that the fungus becomes more sensitive to any increase in heavy metal concentration.

The spawn of *Pleurotus pulmonarius* exposed to different gamma irradiation doses (0.0, 0.25, 0.50, 1.0, 2.0, 2.5 kGy) to activate up taking of presublethal concentration of different element. *Pleurotus pulmonarius* gave maximum growth at 0.25 kGy then as gamma irradiation increased as growth of *Pleurotus pulmonarius* decreased until reached minimum growth at 2.5 kGy so that 0.25 kGy considered an activation dose for uptaking of presublethal concentration of each element (Zn, Co, Pb, and Ni) comparing to other doses.

LIST OF ABBREVATION

BTEX	benzene, toluene, ethylbenzene and xylene
CM-ase	CM-cellulase
CMC	Carboxmethyle cellulase activity
DSC	Differential scanning calorimetry
F 1	Beginning of fruiting stage
F2	End of fruiting stage
GSH	Glutothionine
MT	Metallothionein
NIR	Near-infrared
NMR	Nuclear magnetic resonance
PAHs	Polycylic aromatic hydrocarbons
PCP	Pentachlorophenol
PCs	Phytochelatins
Pr1	Beginning of primordium stage
Pr2	End of primordium stage
PUR	Plastic Polyester Polyurethane
SRS	Spent rice straw

Contents

	Page
LIST OF TABLES	I
LIST OF PHOTOS	III
LIST OF FIGURES	.VI
AIM OF WORK	1
INTRODUCTION	2
I-REVIEW OF LITERATURE	4
II-MATERIAL AND METHODS	36
1. Plastic polyethylene wastes	36
2. Used mushroom	36
3. Source of gamma irradiation	37
4. γ-Irradiation of plastic polyethylene wastes	37
5. Preparation of spawn	37
6.Biodegradation of plastic polyethylene wastes using Pleur	rotus
pulmonarius	37
7. Gamma irradiation of spawn	38
8. Preparation of crude enzymes	38
9. Enzymes Assay-:	39
9.1. Laccase activity	39
9.2. Carboxmethyle cellulase activity (CM cellulase)	39
9.3. Xylanase activity	40
10. Somoygi method for determination the reducing sugar:	40
10.1. Preparation of Somogyi reagent I	40
10.2. Preparation of Somogyi reagent II	40
10.3. Preparation of Nelson reagent	40
10.4. Reducing sugars assay	41
11. Protein Determenation	41
12. Uptake of heavy metals using <i>Pleurotus pulmonarius</i>	42

12.1. Determination of elements	
13. Spectra of infrared for polyethylene plastic	
14. Determination of tensile for polyethylene plastic42	
15. Statistical analysis	
III- EXPERIMENTAL RESULTS	
1. Biodegradation of plastic polyethylene wastes using Pleurotus	
pulmonarius	
1.1. Ability of P. pulmonarius to grow on different wastes of	•
polyethylene plastic with and without radiation44	
2. Some enzymatic activities of P. pulmonarius during the mycelial	
growth and fruiting bodies formation on different wastes (control	
treatment)54	
2.1. Enzymatic activities and total protein content for the non-irradiated	
P. pulmonarius cultivated on the different wastes	
2.1.1. Cellulase activity	
2.1.2. xylanase activity	
2.1.3. Laccase activity	
2.1.4. Total protein	
2.2. Effect of gamma irradiated spawn of P. pulmonarius on the	
enzymatic biodegradation of different wastes	
2.2.1.Cellulase activity	
2.2.2. Xylanase activity	
2.2.3. Laccase activity	
2.2.4. Total protein	
3. Physical changes in polyethylene plastic properties	
3.1. Infrared	
3.2. Tensile test	
4. Uptake of heavy metals using <i>Pleurotus pulmonarius</i> :	

4.1. Determination of pre sublethal concentration of different heavy
metals during growth of <i>Pleurotus pulmonarius</i> 79
4.2. Determination of pre sublethal concentration of Zn element80
4.3. Determination of pre sublethal concentration of Co element: 81
4.4. Determination of pre sublethal concentration of Pb element:83
4.5. Determination of pre sub lethalconcentration of Ni element: 84
5. Effect of gamma irradiation on growth of <i>Pleurotus pulmonarius</i> at pre
sublethal concentration of different heavy metals85
5.1. Effect of gamma irradiation on the uptake of Zn element by
Pleurotus pulmonarius at pre sublethal concentration of Zn
element
5.2. Effect of gamma irradiation on growth of Pleurotus pulmonarius at
pre sublethal concentration of Co element 87
5.3. Effect of gamma irradiation on growth of <i>Pleurotus pulmonarius</i> at
pre sublethal concentration of Pb element
5.4. Effect of gamma irradiation on growth of <i>Pleurotus pulmonarius</i> at
pre sublethal concentration of Ni element91
V- Discussion93
SUMMARY114
REFRENCES 118
ARABIC SUMMARY

Table (1): The cellulase activity of non-irradiated <i>P. pulmonarius</i> during
different incubation periods grown on various wastes simulates (control
treatment)56
Table (2): The xylanase activity of non-irradiated P. pulmonarius during
different incubation periods grown on various waste simulates (control
treatment)59
Table (3): The laccase activity of non-irradiated P. pulmonarius during
different incubation periods grown on various wastes simulates (control
treatment)
Table (4): The total protein level of non-irradiated P. pulmonarius during
different incubation periods grown on various waste simulates (control
treatment)65
Table (5): The cellulase activity of P. pulmonarius grown on various
waste simulates during different incubation periods after exposing their
spawn to different doses of gamma irradiation
Table (6): The xylanase activity of P. pulmonarius grown on various
waste simulates during different incubation periods after exposing their
spawn to different doses of gamma irradiation70
spawn to different doses of gamma irradiation
Table (7): The laccase activity of <i>P. pulmonarius</i> grown on various waste
Table (7): The laccase activity of <i>P. pulmonarius</i> grown on various waster simulates during different incubation periods after exposing their spawn
Table (7): The laccase activity of <i>P. pulmonarius</i> grown on various wasters simulates during different incubation periods after exposing their spawn to different doses of gamma irradiation
Table (7): The laccase activity of <i>P. pulmonarius</i> grown on various waster simulates during different incubation periods after exposing their spawn to different doses of gamma irradiation
Table (7): The laccase activity of <i>P. pulmonarius</i> grown on various waster simulates during different incubation periods after exposing their spawn to different doses of gamma irradiation
Table (7): The laccase activity of <i>P. pulmonarius</i> grown on various waster simulates during different incubation periods after exposing their spawn to different doses of gamma irradiation
Table (7): The laccase activity of <i>P. pulmonarius</i> grown on various waster simulates during different incubation periods after exposing their spawn to different doses of gamma irradiation