CHARACTERIZATION OF HEPATIC FOCAL LESIONS USING MRI WITH NEW CONTRAST MATERIALS

Essay

Submitted For Partial Fulfillment Of The Master Degree **In Radiodiagnosis**

Presented By

Abeer Abdallah Elmehy

(M.B.B.CH)

Supervised By

Prof. Dr. Sherif Abou-Gamrah

Assistant Prof. of Radiodiagnosis
Faculty of Medicine-Ain Shams University

Dr. Amir Louis Louka

Lecturer of Radiodiagnosis
Faculty of Medicine- Ain Shams University

Faculty of Medicine Ain Shams Univerity 2010

Acknowledgement

First of all, thanks to ALLAH who allowed and helped me to accomplish this work.

I would like to thank heartily and to express my utmost gratitude to Prof. Dr. Sherif Abou-Gamrah, Assistant prof. of Radiodiagnosis, Faculty of Medicine, Ain shams University, who gave me a lot of his precious time and unlimited experience. His continous encouragement, valuable guidance and constant support have made this work possible.

I also appreciate too much the guidance offered by Dr. Amir Louis Louka, Lecturer of Radiodiagnosis, Faculty of Medicine, Ain shams University, for his fruitful suggestions, valuable directions and enthusiastic supervision throughout this work.

Lastly, I wish to extend my thanks to all staff members, in radiodiagnosis department, Eldemerdash Hospital, Ain Shams University who have been of help to me during the preparation of this piece of work.

Abeer Abdallah Elmehy

List of Tables

Table.	No. Title	Page No.
Table	(1): Extracellular and hepatocyte- selective gadolinium chelates used in liver MR imaging examination	64
Table	(2): The mechanisms of effect and clinical properties of contrast agents used in liver MR imaging	
	examination.	71
Table	(3): Superparamagnetic iron oxides used in liver MR examination and RES-specific contrast agents	73

List of Figures

Fig. No.	Title	Page	No.
Figure (1): External features of the liver.	6	
Figure (2): Liver lobes and segments	11	
Figure ((3): Segmentation of the liver- Couinaud	13	
Figure ((4): The relation of the hepatic artery, bile duct and portal vein to each other in the lesser omentum: anterior aspect	16	
Figure ((5): The internal features of the liver.	19	
Figure	(6): Axial T1-weighted in- and opposed-phase gradient-echo (GRE)	21	
Figure	(7): A-G Axial maximum intensity projection (MIP)	23	
Figure (8): Axial MR images of the liver.	25	
Figure (9):Sagittal MR images of the liver	26	
Figure ((10): Coronal MR images of the liver	27	
Figure ((11): Large (multiacinar) regenerative nodules	31	
Figure	(12):Focal nodular hyperplasia (FNH) of the liver	32	,
Figure	(13): Hepatocellular adenoma. An axial arterial phase dynamic contrast-enhanced three-dimensional gradient-echo MR	34	
Figure (14): HCC in the right lobe A) MnDPDP-enhanced	36	
Figure (15): Imaging study of cholangiocarcinoma	38	

List of Figures (Cont...)

Figure (16): A) Gadolinium DTPA-enhanced MRI	40
Figure (17): Mn-DPDP-enhanced T1-weighted (170/4.4; flip angle, 80°) MR	48
Figure (18): Showing formation of a spin echo at time	53
Figure (19): Showing dephasing of the magnetisation vector by T2* and rephasing by a 180 degree pulse to form a spin echo.	54
Figure (20): T1-w GRE unenhanced (A), in the arterial phase (B) and 20 minutes after injection of Gd-EOB-DTPA.	80
Figure (21): FNH in the right lobe	82
Figure (22): MR imaging appearance of typical FNH	83
Figure (23): MR imaging appearance of a FNH lesion with a prominent pseudocapsule	84
Figure (24): Multiple lesions of telangiectatic FNH.	85
Figure (25): MR imaging appearance of multiple FNH lesions.	86
Figure (26): NRH in a patient with an autoimmune disorder.	87
Figure (27): a-d. Hepatic adenoma. a. Transverse non-enhanced T1-weighted MR	89
Figure (28):Large single adenoma in a 45-year-old woman.	90

List of Figures (Cont...)

Figure (29): Axial T2-weighted image with fat saturation	
demonstrate a large fluid filled structure in the right lobe of the liver.	92
Figure (30): 48-year-old woman with hemangioma in the right lobe	94
Figure (31): Typical hepatic hemangioma at MRI.	96
Figure (32): 40-year-old woman with hemangioma	97
Figure (33): Transverse fat-suppressed T2W image	99
Figure (34): Dysplastic nodules	101
Figure (35): Large hepatocellular carcinoma at MRI (arrows)	103
Figure (36): Nodule-within-a-nodule enhancement pattern.	104
Figure (37): Hepatocellular carcinoma at MRI.	105
Figure (38): Transverse MR	107
Figure (39): A 57-year-old man with HCC in the right lobe	109
Figure (40): Fibrolamellar HCC	110
Figure (41): Hypervascular metastases in a 55-year-old man with a carcinoid tumor.	111
Figure (42): a, b. Transverse fat-supressed T2W	112
Figure (43): Hypovascular metastases in a 59-year-old patient with colon cancer.	113
Figure (44): 60-year-old man with small hepatic metastasis from colorectal carcinoma	115

List of Figures (Cont...)

Figure (45):	Multiple metastases—improved detection	
	th Gd-EOB-DTPA at the hepatocyte phase	116
of	enhancement	116
Figure (46)	Dynamic Gd-enhanced MR versus	
un	enhanced MR for lesion detection—role of	
31	OFS T1w GRE imaging.)	117
Figure (47):	63-year-old woman with metastatic colonic	
ca	rcinoma. T2-weighted fast spin-echo MR	118
Figure (48):	57-year-old man with surgically confirmed	
0.4	4-cm liver metastasis from rectal cancer	119
Figure (49):	Cholangiocarcinoma	120
Figure (50):	Intrahepatic cholangiocarcinoma at MRI	
(an	rrows).)	122
Figure (51):	A 36-year-old woman with CCC and	
me	etastatic lesions	123

LIST OF ABBREVIATIONS

NRH	Nodular regenerative hyperplasia
FNH	Focal Nodular Hyperplasia
HA	Hepatocellular Adenoma
HCC	Hepatocellular carcinoma
FHCC	Fibrolamellar Variant of HCC
IHE	Infantile Hemangioendothelioma
AML	Angiomyolipoma
EHE	Epithelioid hemangioendothelioma
HB	Hepatoblastoma
IPT	Inflammatory Pseudotumor
SE	Spin echo sequence
GRE	Gradient recalled echo sequence
FOV	Field of View
STIR	Short T1 inversion recovery
FLAIR	Fluid attenuated inversion recovery
MAST	Motion artifact suppression technique
FLASH	Fast Low-Angle Shot
GRASS	Gradient-Recalled Acquisition in the steady state
HASTE	Half Fourier Acquisition Single Shot Turbo Spin Echo
VIBE	Volumetric Interpolated Breath-Hold Examination
FIRM	Fast inversion-recovery motion-insensitive
DWI	Diffusion-weighted Imaging
SENSE	Sensitivity Encoding
SMASH	Simultaneous Acquisition of Spatial Harmonics
Gd-DTPA	Gadopentate dimeglumine
Gd-DTPA-	Gadodiamide
BMA	
Gd-DOTA	Gadoterate meglumine
Gd-HP-DO3A	Gadoteridol
Gd-BOPTA	Gadobenate dimeglumine
Gd-EOB-	Gadoxetic acid(Gadolinium- ethoxybenzyl-
DTPA	diethylenetriaminepentaacetic acid)
Mn-DPDP	Mangafodipir trisodium
CMC-001	Copenhagen Malmö Contrast
SPIO	Superparamagnetic iron oxide
USPIO	Ultrasmall superparamagnetic iron oxide
VSOP-C184	Very small SPIO particle, citrate coating, 184th
	formulation

CONTENTS

Introduction				
Aim of the work				
Review o	f literature4			
0	Anatomy of the Liver4			
0	Histopathological classification of hepatic focal lesions			
0	Basic principles and techniques of magnetic resonance imaging			
0	Contrast media used in liver MRI62			
0	Diagnostic imaging of hepatic focal lesions using the new MRI contrast agents			
Summar	y and Conclusion 124			
Reference	e es			
Arabic sı	ummarv			

INTRODUCTION

The liver is the largest of the abdominal viscera, occupying a **L** substantial portion of the upper abdominal cavity. It performs a wide range of metabolic activities necessary for homeostasis, nutrition and immune defense. (Standring et al., *2005*).

Hepatic focal lesions constitute a daily challenge in the clinical settings. However, noninvasive methods can be useful in the detection and characterization of these lesions. The noninvasive diagnosis of liver lesions is usually achieved with contrast material-enhanced computed tomography and magnetic resonance (MR) imaging. Dynamic three-dimensional gradientrecalled-echo MR imaging provides dynamic contrast-enhanced thin-section images with fat saturation and a high signal-tonoise ratio and is excellent for the evaluation of various focal hepatic lesions (Elsayes et al., 2005)

Metastases are the most common malignant liver lesions and the most common indication for hepatic imaging. Specific characterization of liver metastases in patients with primary non-hepatic tumors is crucial to avoid unnecessary diagnostic work-up for incidental benign liver lesions. Magnetic resonance (MR) is rapidly emerging as the imaging modality of choice for detection and characterization of liver lesions due to the high specificity resulting from optimal lesion-to-liver contrast. (Elsayes et al., 2005).

With the recent advances in MR contrast agents, MR may replace computed tomographic arterial portography. MR imaging has several advantages over CT such as no risks from radiation exposure and no adverse reactions to iodinated contrast agents. Indeed, MR is rapidly evolving as the primary imaging modality for the detection and characterization of liver lesions including metastases (*Ward et al.*, 2006)

The ideal contrast agent for liver MR examinations must have a strong magnetic effect, little if any side effects and biodistribution differentiation. (*Reimer et al.*, 2004)

There are two classes of MRI contrast agent available commercially to image the liver: <u>liver-specific</u> and <u>liver-nonspecific contrast agents</u>. The liver-specific agents are divided into two groups: hepatocyte-selective and reticuloendothelial-specific contrast agents. Reticuloendothelial-specific agents are ferumoxides and ferucarbotran; hepatocyte-specific agents are gadobenate dimeglumine and gadoxetic acid. The nonspecific contrast agents are Gd-chelates, such as Gd-DTPA-BMA and Gd-DTPA (*Huppertz et al.*, 2005).

AIM OF THE WORK

The aim of this work is to evaluate the role of contrast enhanced MRI in detection and characterization of hepatic focal lesions regarding its advantages over other modalities used in liver imaging using new contrast agents, so allow early and appropriate management of liver tumors.

Anatomy of the Liver

The liver is a vital organ as it has a wide range of functions, including detoxification, protein synthesis, and production of biochemicals necessary for digestion. The liver is necessary for survival; there is currently no way to compensate for the absence of liver function. (*Maton et al.*, 1999)

Position and shape:

The liver is located in the upper right-hand portion of the abdominal cavity beneath the diaphragm and on top of the stomach, right kidney, and intestines. It extends from the right lateral aspect of the abdomen 15 to 20 cm transversely toward the xiphoid. (*Standring et al.*, 2005).

Fixation of the liver:

Several factors contribute to maintain the liver in place. The attachments of the liver to the diaphragm by the coronary and triangular ligaments and the intervening connective tissue of the uncovered area would hold up the posterior part of the liver. (*Standring et al.*, 2005)

External features

Peritoneal attachments to the liver:

The liver is connected to the under surface of the diaphragm and to the anterior wall of the abdomen by five ligaments. (Fig. 1)

The falciform ligament

It is a broad and thin antero-posterior peritoneal fold. It is attached by its left margin to the under surface of the diaphragm, and the posterior surface of the right Rectus sheath; by its right margin it extends from the notch on the anterior margin of the liver to the posterior surface. (*Standring et al.*, 2005).

The coronary ligament

It consists of an upper and a lower layer. The upper layer is formed by the reflection of the peritoneum from the upper margin of the bare area to the under surface of the diaphragm. The lower layer is reflected from the lower margin of the bare area on to the right kidney and suprarenal gland (*Standring et al.*, 2005).

The triangular ligaments

The **right triangular ligament** is situated at the right extremity of the bare area. It is formed by the opposition of the upper and lower layers of the coronary ligament. The **left**

triangular ligament connects the posterior part of the upper surface of the left lobe to the diaphragm. (*Standring et al.*, 2005).

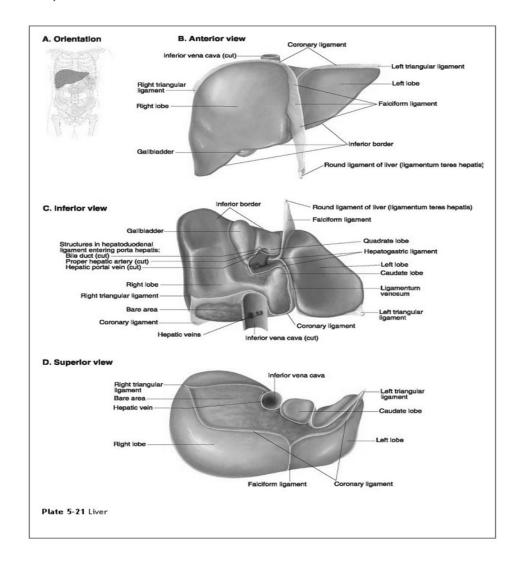


Figure (1): External features of the liver (*Lippincott Williams & Wilkins Atlas of Anatomy, 1st Edition. 2008*).