

Fracture Toughness Assessment for Steel Pipes Used in Gas Pipelines

A Thesis submitted in partial fulfillment of the requirements of the degree of Master of Science in Mechanical Engineering

(Design and Production Engineering)

by

Ahmed Eid Said Khalil

Bachelor of Science in Mechanical Engineering (Design and Production Engineering) Faculty of Engineering, Ain Shams University, 2010

Supervised By

Prof. Taher G. Abu-EL-Yazied
Prof. Aly A. EL Domiaty
Prof. Hala Abd EL Hakim Hassan

Cairo - 2017

Statement

This thesis is submitted in a partial fulfillment of Master of Science in Mechanical Engineering, specialization (Production Engineering), Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

		Sig	gnature
Al	nmed E	id Said	Khalil
	Date:		2017

Researcher Data

Name : Ahmed Eid Said Khalil

Date of birth : 4/6/1988

Place of birth : Cairo, Egypt

Last academic degree : Bachelor of Science Degree (B.Sc.)

Field of specialization : Mechanical Engineering

University issued the degree : Ain Shams University

Date of issued degree : July, 2010

Current job : Teaching Assistant, Design and Production

Engineering Department, Faculty of Engineering, Ain Shams University,

Cairo, Egypt.

Thesis Summary

The current work is focused on studying the Fracture assessment of steels pipe with different grades. The research is divided into two parts. The first part is focused on determination of the fracture energy for materials used in natural gas pipelines. Double edge notch tension (DENT) samples with different ligament lengths of each pipe thickness were tested in tension to determine the fracture energy of each material. Increasing the pipe thickness increased the essential work of fracture. The results have a qualitative agreement with previous work.

The second part is studying the fracture toughness on full scale steel pipes under internal pressure with axial partially-through crack using two analytical methods Folin-Ciocalteu method (FC method) and Gauss–Seidel method (GS method). In this work, a comparison is made between results obtained from FC and GS methods. The GS is more conservative assessment method as it provides smaller crack depth (a) corresponding to (J_{cr}). In addition, Finite Element model was established to simulate the crack propagation in full scale pipe. Generally, Finite Element model is almost more conservative than the analytical methods and its results close to the experimental values.

Table of Contents

Ta	ible of C	onte	nts	1
No	omenclat	ture.		iii
Αc	cknowle	dgen	nent	vi
Li	st of Fig	ures		vii
Li	st of Tab	oles .		X
1	Intro	oduc	tion	1
2	Lite	ratuı	re Review	4
	2.1	Fra	cture Mechanics	4
	2.2	LEI	FM and EPFM	4
	2.3	Plas	stic Zone Size	5
	2.4	Mo	des of Loading	7
	2.5	Lin	ear Elastic Fracture Mechanics (LEFM)	8
	2.6	Elas	stic-Plastic Fracture Mechanics (EPFM)	11
	2.7	Ess	ential Work of Fracture (EWF)	12
	2.8	Ful	l Scale Pipe	15
	2.8.	1	Failure of Pipes.	15
	2.8.2 2.8.3		Cracks in Pipe	15
			Axial semi-elliptical part-through crack in pipe	17
	2.9	The	FC Method	19
	2.10	The	GS Method	19
3	Exp	erim	nental Work	20
	3.1	Ma	terial	20
	3.2	Che	emical Analysis	20
	3.3	Ten	sile Test	21
	3.3.	1	Sample Preparation	21
	3.3.	2	True Stress – Strain	23
	3.3.3		Ramberg – Osgood parameters	24

	3.4	Esse	ential Work of Fracture (EWF)	25
	3.4	1.1	Test Sample	25
	3.4	1.2	Test Procedure	29
	3.4	1.3	Fractography	30
	3.5	Full	Scale Pipe	30
4	Fin	nite El	ement Method	31
5	Re	sults a	and Discussion	36
	5.1	Ten	sile Test Results	36
	5.2	Esse	ential Work of Fracture	40
	5.2	2.1	Effect of ligament length on fracture load $(P_{max.})$	42
	5.2	2.2	Effect of pipe thickness on the fracture load	43
	5.2	2.3	The effect of ligament length on maximum displacement	44
	5.2	2.4	Effect of pipe thickness on maximum displacement	46
	5.2 wo		The effect of pipe alloy and thickness on the specific total fracture	
	5.2	2.6	Interpretation of Results using Different Models	57
	5.2	2.7	Fractography	62
	5.3	Full	Scale Pipe Analysis	66
	5.3	3.1	Experimental results for investigated samples	66
	5.3	3.2	Analytical Methods	67
	5.3	3.3	Finite element method result	70
6	Co	nclusi	ions	75
$\mathbf{R}\epsilon$	ference	20		77

Nomenclature

EDEM	Electic Diestic Energy Markenine
	Elastic-Plastic Fracture Mechanics
K	•
-	The stress intensity factor - mode I
	Critical stress intensity factor = fracture toughness
K_{IC}	Plane strain fracture toughness - mode I (material
	property)
r and θ	Cylindrical polar coordinates of a point with respect
	to crack tip
$\sigma_{app.}$	The applied stress
h	Crack length
W	The specimen width
$f\left(\frac{h}{w}\right)$	Dimensionless parameter that depend on the
- (w)	geometries of the specimen and crack
P	Applied load
G	Energy release rate
J-Integral	Fracture toughness parameter for elastic-plastic
	material
$J_{\mathrm{el.}}$	J - elastic
$J_{\rm pl.}$	J - plastic
J-R curve	J resistance curve
J_c	The critical J-Integral value
CTOD	Crack Tip Opening Displacement
ρ	The length of the plastic zone
E	Modulus of elasticity
υ	Poisson's ratio
SENB	Single edge notched bend specimen
CT	Compact tension specimen
T_{i}	Components of the traction vector
u_i	Displacement vector components
ds	Length increment along the contour Γ
EWF	Essential work of fracture method
DENT	Double Edge Notched Tension specimens
1	Sample nominal ligament length

LEFM Linear Elastic Fracture Mechanics

- t Specimen thickness
- W_F Total work of fracture
- We Essential work of fracture
- W_p Non-essential work of fracture
- w_F Specific total work of fracture
- we Specific essential work of fracture
- w_p Specific non-essential work of fracture (plastic work per unit volume)
 - β The shape factor associated with the volume of plastic deformation zone (it depends on the geometry of yield zone)

GE/EPRI method General Electric/Electric Power Research Institute method

LBB.NRC method Leak Before Break/Nuclear Regulatory Commission method

- c Half crack length of axial semi-elliptical partthrough crack for full scale pipe
- a Crack depth of axial semi-elliptical part-through crack for full scale pipe
- acr Critical crack depth for full scale pipe
- σ_h The hoop stress for pipe
- p Pipe internal pressure
- D Pipe outer diameter
- R Pipe outer radius
- M_F A front-face correction on the stress intensity factor for the surface crack
- E_(K) Elliptical integral of the second kind
- M_{TM} The shell-curvature correction factor for a surface crack
 - M_T Folias correction factor which include the effect of pipe curvature
 - σ_0 The yield stress of the material
 - ϵ_o . The strain corresponding to yield strength $\epsilon_o = \frac{\sigma_o}{E}$
- α, m Material constants (Ramberg-Osgood parameters)
 - σ_n The nominal stress
- σ_{true} True stress

σ Engineering stress

 ε_{true} True strain

e Engineering strain

k Strength coefficient

n Strain hardening exponent

r_p Plastic zone size

P_{max}. Fracture load of DENT sample

δ_c Critical crack opening displacement

VHN Vickers hardness number

PZS Plastic zone size

 σ_{max} Maximum stress on sample

d The process zone width of DENT sample

SEM Scanning Electron Microscope

C Plastic constraint factor

FEM Finite Element Method

FC Method The Folin-Ciocalteu method

GS Method The Gauss-Seidel method

Acknowledgement

I would like to express my gratitude to my academic advisors, Prof. Taher Gamal-El-Deen Abu-El-Yazied, Prof. Aly A. EL Domiaty and Prof. Hala Abd EL Hakim Hassan for their guidance and motivation during this work. I am extremely thankful to PETROJET Co. and Staff Training Institute (STI) for providing material and samples preparation. Many thanks to Prof. Iman El-Mahalawy with Faculty of Engineering, Cairo University for her help during this work. I appreciate my colleagues' efforts in Design and Production Engineering Department, Faculty Of Engineering, Ain Shams University.

I sincerely thank my parents and my wife for their encouragement and support during this work.

List of Figures

Figure 2-1 LEFM, EPFM and plastic collapse depending on crack tip pla	stic
zone [3]	
Figure 2-2 Plastic zone size according to Irwin [3]	6
Figure 2-3 Plastic zone size according to Dugdale [2]	6
Figure 2-4 Plastic zone shape according to Von Mises yield criteria [2]	7
Figure 2-5 Modes of loading [2]	8
Figure 2-6 Stresses at a point in the vicinity of crack tip [2]	8
Figure 2-7 Variation of fracture toughness with specimen thickness for a	
steel alloy [9]	10
Figure 2-8 Arbitrary contour around the crack tip[2, 6]	11
Figure 2-9 Schematic of EWF method [15]	12
Figure 2-10 Two crack types (a) circumferential crack (b) axial crack [28]	3] 16
Figure 2-11 Axial semi-elliptical part-through crack [34]	17
Figure 3-1 Longitudinal strip from pipe	21
Figure 3-2 Configuration and dimensions of tension test sample accordin	g to
ASTM A370 [42]	22
Figure 3-3 Engineering stress – strain curve for (a) steel X42 and (b) stee	el
X52	23
Figure 3-4 Pipe after milling operation	26
Figure 3-5 Strip shape and dimensions	26
Figure 3-6 Double edge notch sample dimensions	27
Figure 3-7 Load-Displacement curve for 7-A sample	29
Figure 4-1 Non-linear behavior of material steel X70 according to Rambo	erg-
Osgood equation redraw after [34]	31
Figure 4-2 The behavior of bilinear material steel X70 with tangent	
modulus= 1741 MPa from Ansys program	32
Figure 4-3 Base mesh for pipe	32
Figure 4-4 Fracture meshing around the crack tip	33
Figure 4-5 Semi-elliptical crack in XZ plane	33
Figure 4-6 Semi-elliptical crack parameters in Ansys	34
Figure 5-1 True stress-true strain curve for (a) steel X42 and (b) steel X5	2 37
Figure 5-2 Stress-strain graph log scale for steel X42	38
Figure 5-3 Stress-strain graph log scale for steel X52	38
Figure 5-4 Ramberg-Osgood parameters analysis for steel X42	39
Figure 5-5 Ramberg-Osgood parameters analysis for steel X52	40

Figure 5-6 Load-Displacement curves obtained from DENT samples with
different ligament lengths for steel X52 with thickness=5.74 mm samples. 41
Figure 5-7 Load-Displacement curves obtained from DENT samples with
different ligament lengths for steel X52 with thickness=2.11 mm
Figure 5-8 Maximum load vs ligament length for two thickness of steel X52
obtained from tension test of DENT
Figure 5-9 Maximum load vs ligament length for two thickness of steel X42
obtained from tension test of DENT
Figure 5-10 Maximum load versus ligament length for steel X42, X52 and
steel 37 [45]
Figure 5-11 Maximum displacement vs ligament length for two thickness of
steel X52
Figure 5-12 Maximum displacement vs ligament length for two thickness of
steel X42
Figure 5-13 Micrographs of steel X42 pipe with thickness of 7.62mm (a)
outer surface, (b) inner surface and (c) middle of the sample. The inclusions
are marked with dotted red circles
Figure 5-14 Dotted circles show full yielding around the ligament (a)X42
pipe with 7.62mm thickness (b) X52 pipe with 5.74mm thickness
Figure 5-15 The trapezoidal rule to calculate area under curve
Figure 5-16 Specific total work of fracture vs ligament length for $t = 2.11$
mm steel X52
Figure 5-17 Specific total work of fracture vs ligament length for $t = 5.74$
mm steel X52
Figure 5-18 Specific total work of fracture vs ligament length for $t = 2.11$
mm steel X42
Figure 5-19 Specific total work of fracture vs ligament length for $t = 7.62$
mm steel X42
Figure 5-20 Specific total work of fracture vs ligament length for steel X52
with t=2.11mm and 5.74mm
Figure 5-21 Specific total work of fracture vs ligament length for steel X42
with t=2.11mm and 7.62mm
Figure 5-22 Specific total work of fracture vs ligament length for X42 and
X52 with 2.11 mm thickness and St. 37 with 1.2 mm thickness [45] 57
Figure 5-23 The relation between maximum stress and the ligament length
along with the validity limits for (a) Steel X42 t=2.11mm, (b) Steel X42
t=7.62mm, (c) Steel X52 t=2.11mm and (d) Steel X52 t=5.74mm 58
Figure 5-24 The macroscopic fracture surface

Figure 5-25 SEM fractography shows the direction of the crack growth and
overload area in X52 DENT samples
Figure 5-26 SEM fractography shows ductile features of X52 DENT samples
(a) Low magnification and (b) Higher magnification
Figure 5-27 SEM fractography of X42 DENT samples (a) Mix of ductile and
cleavage fracture features (arrowed) (b) Cleavage fracture areas at higher
magnification
Figure 5-28 J-integral vs a by FC and GS methods for used pipes (a) 52-I, (b)
65-I, (c) 65-II, (d) 70-I and (e) 70-II
Figure 5-29 The J-integral at fracture pressure for (a) Steel X65 and (b) Steel
X7071
Figure 5-30 Comparison between J-a relation from FC, GS and Finite
Element methods for used pipes (a) 52-I, (b) 65-I, (c) 65-II, (d) 70-I and (e)
70-II

List of Tables

Table 3-1 Selected steel pipes grades and their dimensions [40]	20
Table 3-2 The chemical composition of X42 and X52 seamless steel pipes	20
Table 3-3 The chemical composition of X42 and X52 according to API 5L	
[41]	21
Table 3-4 Samples identification number for steel X52 and steel X42	
Table 3-5 Actual ligament length (l) for DENT samples	
Table 3-6 Check validity conditions of samples of steel X52	28
Table 4-1 Full scale pipe: Materials, Dimensions and Identification number	
for investigated pipes[34]	35
Table 5-1 Mechanical properties for steel X42 and X52	36
Table 5-2 Yield and ultimate strength ranges for steel X42 and X52	
according to API 5L [41]	36
Table 5-3 The values of strength coefficient k and strain hardening exponen	nt
n for steel X42 and X52	
Table 5-4 Ramberg – Osgood parameters for steel X42 and X52	
Table 5-5 Fracture load for steel X52 and steel X42 samples	44
Table 5-6 Critical crack opening displacement (δ _c) for X52 and X42	
Table 5-7 Maximum Displacement at fracture for steel X52 and steel X42	
DENT samples	46
Table 5-8 Microhardness measurements of X42 sample with 7.62mm	
thickness	48
Table 5-9 Plastic zone size for each sample for steel X42 and X52	50
Table 5-10 Total work of fracture (W _t) for steel X52 and steel X42 samples	S
	52
Table 5-11 Specific total work of fracture (w _t) for steel X52 and steel X42	52
Table 5-12 Summary of essential work of fracture (w _e) for both X42 and	
X52 steel with different thicknesses	55
Table 5-13 Mean maximum stress for steel X42 and X52	58
Table 5-14 Values of specific essential work of fracture (w _e) compared to	
Wells method results	61
Table 5-15 The mechanical properties for steel pipe X42 and X52	62
Table 5-16 Values of specific essential work of fracture (w _e) compared to	
estimated J _c	62
Table 5-17 Mechanical properties and J _{cr} for pipe materials [34]	
Table 5-18 Plastic constraint factor (C) and fracture pressure for each pipe	
[34]	67

Table 5-19 The deviation percentage in the critical crack depth of each	
method relative to the experimental value	74